ra

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

MULTILEVEL DATA ASSOCIATION
FOR THE
VESSEL TRAFFIC SERVICES SYSTEM
AND THE
JOINT MARITIME
COMMAND INFORMATION SYSTEM

by
Ian Neil Glenn

December, 1995

Thesis Advisor: Murali Tummala

Approved for public release; distribution is unlimited

PTIC QUATITY I STRCGTED 1

19960401 0gg

Form Approved

REPORT DOCUMENTATION PAGE OME N 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01 88), Washington, DC 20503.

—————————— e ————————— et e e
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1995 Master’s Thesis
4.TITLE AND SUBTITLE 5. FUNDING NUMBERS

MULTILEVEL DATA ASSOCIATION FOR THE VESSEL TRAFFIC
SERVICES SYSTEM AND THE JOINT MARITIME COMMAND
INFORMATION SYSTEM(U)

6. AUTHOR(S)

Glenn, Ian Neil

7. PERFORMING ORGANIZATION NAMEiS) AND ADDRESS(ES)) 8. PERFORMING ORGANIZATION

Naval Postgraduate Schoo REPORT NUMBER

Monterey, CA 93943-5000

P P T T Y e ——— .
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
USCG Electronics Engineering Center, Wildwood, New Jersey AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT . - 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)
This thesis develops an algonthm to fuse redundant observations due to multiple sensor coverage

of a vessel. Fuzzy membership functions are used as a measure of correlation, and a fuzzy associative
system determines which observations represent the same vessel. The result is a computatlonally efficient
algorithm. The output of the system is a unique set of vessels identified by unique platform identifiers.
Results of tests based on computer simulation of overlapping radar coverage show that the fusion
algorithm correctly correlates and fuses the sensor observations. That the VTS system is a subset of the
| Joint Maritime Command Information System (JMCIS) and ultimately the Global Command and Control
Software (GCCS) system makes this algorithm pertinent not only to the US Coast Guard, but also to the
US Navy, DOD and other agencies such as the Canadian Navy that use this software.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Vessel Traffic Services System, Data Fusion, Fuzzy Logic, Membership 131

Function, Joint Maritime Command Information System, Global Command |fe PricEcone
and Control System, Data Association

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPQRT OF THIS _PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

MULTILEVEL DATA ASSOCIATION
FOR THE
VESSEL TRAFFIC SERVICES SYSTEM
AND THE
JOINT MARITIME
COMMAND INFORMATION SYSTEM

Ian Neil Glenn
Major, Canadian Armed Forces
B.Eng., Royal Military College of Canada, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1995

Jan N. Glenn

Approved by W

urali Tummala, Thesis Advisor

i ;ﬁ%i\

Roberto Cristi, Second eader

Sl 1,

Herschel H. Loorms Jr., Cha1
Department of Electrical and Computer Engmeermg

1ii

v

ABSTRACT

This thesis develops an algorithm to fuse redundant observations due to multiple
sensor coverage of a vessel. Fuzzy membership functions are used as a measure of correla-
tion, and a fuzzy associative system determines which observations represent the same
vessel. The result is a computationally efficient algorithm. The output of the system is a
unique set of vessels identified by unique platform identifiers. Results of tests based on
computer simulation of overlapping radar coverage show that the fusion algorithm cor-
rectly correlates and fuses the sensor observations. That the VTS system is a subset of the
Joint Maritime Command Information System (JMCIS) and ultimately the Global Com-
mand and Control Software (GCCS) system makes this algorithm pertinent not only to the
US Coast Guard, but also to the US Navy, DOD and other agencies such as the Canadian

Navy that use this software.

Vi

1.

VI

TABLE OF CONTENTS

INTRODUCTIONt e e e 1
A. GOAL OF THESIS. oot e, 1
B. THESISOUTLINE.ottt 2
TRACK ACQUISITIONttt 5
A. RADAR TRACKSt 8
B. AUTOMATED DEPENDENT SURVEILLANCE (ADS) 12
C. STANDARD ROUTESt 14
DATA FORMATTING AND PREPROCESSING . ..o oo 17
A. DATAFORMATTING . ..o 17

1. Radar Tracks From Remote Site Processors 17

2. ADS Tracks . ..ot 19

3. SRTIACKS . . oo e, 19
B. WINDOWINGt 21

1. Selectan N Second Windowcooo. ... 21

2. Select Most Recent Tracks . .. oo oo oo e 23
ALGORITHM e e 25
A. FUZZY ASSOCIATIONFORFUSION . ..o, 25
B. POSITIONAL FUSIONot 26
C. DATABASEFUSIONt 32
RESULT S .o 33
A. SIMULATION CONSTRUCTIONovoeeee 33
B. RESULTS . .. e 35
CONCLUSION . ..o e e ... 49
A. DISCUSSION OF RESULTS . ..o oo 49
B. SUGGESTIONS FOR FURTHER DEVELOPMENT: 49

1 SR Implementation 49

2 Integration into IMCIS 49

3. Membership Function Design 50
C. SUMMARY ... e 50

vii

APPENDIX A. ALGORITHMCODE.t 51

APPENDIX B. SIMULATIONCODE0oouiiiinianann.. 81
APPENDIX C. PREPROCESSING CODE..........ccoiuinninnnnnnnnnnn.., 99
APPENDIX D. SIMULINK SIMULATION PARAMETERS 109
LISTOFREFERENCESttt 115
INITIAL DISTRIBUTION LIST ...ttt 117

viii

1.1

1.2

2.1

2.2

23

3.1

32

33

4.1

42

4.3

44

4.5

5.1

5.2

53

54

5.5

5.6

5.7

5.8

LIST OF FIGURES

System OVerview DIagramc.coceceeeeeieinurnnrrcesrrnseseeesssessssesesssesssseseseesessnne 2
Overview of Fusion AIZOTIthImc....cceveeiiiiiciincceeecntree e 3
JMCIS Flow. From Ref. [7] .occuoiiiiiiiirirnrecnest st 7
JMCIS Software ArChiteCturecccveeveeeereerereeeeeeereee e seeeeeseeseesesse s esesnes 8
SR Utilization POSSIDILItIEScccecvvvevtiiiieetereniiieieeece e 15
Data Format from Telephonics RSPcccccccovniniinineeenseee et 18
Iustration of an N Second Data Windowcceveievnnennienescresserereeseenens 22
Most ReCEnt TTACKSc.ccceuireireeiniiirieienieteieeree ettt ssese ettt besens 23
Fusion Alorithm FIOWcccocoviiivnmiiiniiienieictesecceeereeet ettt e 27
Position (Latitude/Longitude) Membership Functioncccoceveeievvervenenne. 28
Membership Functions Used in Fuzzy Associative Systemcccveeverernenne. 29
Variable Threshold FUNCHONSccooecieeinieieeeecceeee et 30
Fuzzy ASsOCiative SYSIEIMc.cccovcviruriirireeirisieeenceee e et sesesss e seeesesssnsssnnnes 31
Estimated Tracks For Vessels A and Bc.cccoeeeeeeceeiceeeeeeeeec, 37
Magnified View Of Vessels A and B Tracksccccoeeverererreeceieecenevenenereenens 37
Estimated Tracks For Vessels C and Dcocceoeeveveeeeeeeeerieneee s 38
Magnified View Of Vessels C and D Tracksccccceveveeeerereerenceieneeieeeveeeeenne. 38
Miss Distances from Actual TTaCKccocevvieereereterereeeeecececeeeceseee e 39
Calculated Course and Speed of Vessels A and Bc.coueeeevieereeveeeneeenenne. 40
Calculated Course and Speed of Vessels Cand Dc.ooeevveeveercereveeeerennne. 41
Size Feature HiStOZIAIMSccccerueeririeiririrenensereresinsesetesesesesssesessseseeseseeseseseneens 42

ix

59

5.10

5.11

5.12

5.13

5.14

5.15

D.1

D.2

D3

Tracks Input to Fusion AIZOTithimc.c.ccocueeieinieieeeeieeeeee e 43

Fusion Algorithm Output at Time 585 and 870ccecevvvuevevvreererereeereeeereen. 44
Fusion Algorithm Output at Time 975 and 1125coeuevevvreeceeeceseeeeeenens 45
Fusion Algorithm Output at Time 1335 46
Post-Fusion: Fused (magenta) and Not Fused (cyan) Trackscccooeeeunee... 46
Post-Fusion: Fused Tracks in Overlap Regionccccoevieeueeeeeveiecncenicennens 47
Post-Fusion: Unique Platform Tracks From Tdbmccccceovveueerueeereeveereeennns 47
Simulink Model Used To Generate Trajectoriescovererrerrrrsrerererersennns 110
Simulink Model Parameters ONEccowueeerueeeruereereseeressssersessssesscsssesssasens 112
Simulink Model Parameters TWOccocuvevrierercrereeceeeceeesseeeiceeseesscesnssnns 113

2.1

2.2

23

24

3.1

3.2

33

D.1

LIST OF TABLES

TDU Detection Default Parameters. From Ref. [8]. ..ocvvevvvvivireeeiieeceeeeecereeeeen. 10
Telephonics Target Track Outputs. After Ref. [8]. ...cccovevereveeriecrieceieeceeene 11
ADS Reporting Data Structure. After Ref. [5]. ...ccoceeveerererereereererceeeeececene 13
Data Elements for Tdbm Track History Recordingcccoeeeveveeererecreienevincnnnnee 13
Telephonics Data After Preprocessingocoeeveuererrveesrereeeeeeeseneeeseseseesenens 20
Six Second Data WindOWccoceieurininrueiniiesineni e sesssessesens 22
Most Recent Tracks in Datacooeverrrieeneiiieieeceeeee et 23
Parameters Used To Generate Trajectoriescucuereereererererreererereeneerercseensenns 109

Xi

I. INTRODUCTION

The United States Coast Guard uses the US Navy’s Joint Maritime Command
Information System (JMCIS) software as the core software in their Vessel Traffic Services
(VTS) systems. This software allows numerous sensors of various types, primarily radar,
to make reports to the central supervisory and controlling site, the Vessel Traffic Center
(VTC). At the VTC, the sensor information is plotted as tracks on the displays of the oper-
ators who are tasked with monitoring vessel traffic and providing advisories to vessels in
transit or anchoring in key waterways. The current VTS software lacks a mechanism to
correlate duplicate sensor tracks to reduce the amount of information presented to each

operator. This thesis addresses this problem.

A. GOAL OF THESIS

This thesis presents an algorithm that performs central level fusion on data from
various sensor sources providing vessel tracks for display and archival purposes. The algo-
rithm is a refinement of a previously proposed algorithm to fuse the outputs of sensors,
such as the Telephonics Remote Site Processor (RSP), providing overlapping coverage.
The algorithm has been generalized to accept and fuse an arbitrary number of tracks from
any available sensor that can provide any of the following feature information: latitude,
longitude, course, speed, and size (approximately length times beam). The data collected
are fused to create a single unified track table for display to the VTS operators and for
maintenance of an historical record. The fusion process consists of several levels in order
to achieve an integrated data set. Also, separate data conversion mechanisms are required
to prepare the data for fusion. Figure 1.1 provides an overview of data flow within the Ves-

sel Traffic Services system.

S s
e G
[eiie el .

Extraction/ !
Data
Conversiol

Figure 1.1. System Overview Diagram
B. THESIS OUTLINE

Figure 1.2 shows an outline of the proposed algorithm. Each section of the algo-
rithm will be expanded upon in the following chapters. Sources of valid sensor tracks will
be dealt with in Chapter II. The preprocessing necessary to prepare the data for the algo-
rithm is discussed in Chapter III. The actual algorithm along with a description of the
fuzzy association part of the algorithm is presented in Chapter IV. The simulation gener-
ated to test the performance of the algorithm along with the results is detailed in
Chapter V. Conclusions are offered in Chapter VI. The Appendices list the fusion code

and the simulation code used to test the algorithm.

Preprocessing

Y

Windowing

v

Fusion

!

Tdbm
Interface

i

Operator Display Prospective
Processor List

Figure 1.2. Overview of Fusion Algorithm

II. TRACK ACQUISITION

This chapter presents the details of how tracks are acquired by the VTS system. As
the VTS system is a subset of the Joint Maritime Command Information System (JMCIS),
the JMCIS software system is presented in detail with specific references to the particular
setup of the VTS system — especially as it applies to the New York Harbor. The key ele-
ment of the system is the Unified Build (UB) Software Development Environment (SDE)
Track Database Manager (Tdbm) Service. [Ref. 6] The pertinent details of the Tdbm will
be presented along with a discussion of the various sensor inputs that provide tracks to the
Tdbm.

To appreciate the necessity of a data fusion algorithm, an understanding of the
quantity and type of data that the various sensors are reporting continuously to the system
is required. These sensors provide coverage of the Area of Responsibility (AOR) in elec-
tronic form, allowing automation of numerous supervisory and advisory tasks. In particu-
lar, hazardous situations can be automatically detected and the VTS operators alerted
through the VTS Alarm Toolbox [Ref. 2].

The primary sources of vessel positions are the tracks generated by the Telephon-
ics remote site processors (RSPs) running Kalman filters at each remote site {Ref. 8]. A
new innovation under development is the Automatic Data Sensors (ADS) [Ref. 5] where
vessels report either the Global Positioning System (GPS) or the Differential GPS (DGPS)
information to the system over radio link. Estimated Positions (EPs) of vessels transiting
through the region based on VTC established Standard Routes (SR) can also be made
available to the system. These are referred to as SR tracks and are described fully later in

this chapter.

As mentioned, the VTS software is essentially JMCIS with all correlation func-

tions less Link Correlation turned off as indicated in Figure 2.1. Currently, the VTS oper-
ates as follows:

* Tracks are generated and reported to the central site, the Vessel Traffic Center.

* Atthe central site, tracks are fed through the link correlator where each track is

considered a link.

Presently because there exists no automated way to perform liﬁk to link correla-
tions, each link is associated on a one-on-one basis with a platform track. Platform tracks
form the basis of what operators see on their displays and what is archived for historical
purposes. The latter is performed by an archiving daemon that copies out the platform
track contents of the Tdbm periodically to an archival database. Link tracks are not
recorded anywhere in the system except in the Tdbm where they exist only until replaced
by a more recent track reported by the same site and track number of a RSP.

Figure 2.1 illustrates the modules available in the JMCIS on which VTS is based.
As previously stated, VTS uses only the link correlator and turns off all other functions to
ensure that the one-to-one correlation between link track and platform track is not broken
by the correlator. While this is required to ensure that the ship classifications do not dis-
rupt the association of reports to platform tracks, it is limiting in that currently in VTS no
many-to-one or multiple link tracks to one platform track associations can be made. The
aim of the proposed algorithm is to perform those associations such that the association
process is as transparent as possible to the operators.

Figure 2.2 shows in detail the inner workings of the JMCIS. The fusion algorithm
would operate as part of the Correlator and interact directly with the Tdbm. The Track
Database Manager provides the central clearinghouse for all sensor generated tracks
reported to the central processing site. Tracks arrive and get recorded in the system. Each

track is fed through the correlator to promote it to an existing platform track or cause the

Main

Controller
Geofeasibility
Checks
K Y /A Link
5 7 % | Correlation
Y l l l

Y

Decision Decide if paring
Rules is correct

Track Decision

Figure 2.1. JMCIS Flow. From Ref. [7]

generation of a new platform track. In the current implementation, all linked tracks get
prombted to platform tracks which are both archived and displayed. The proposed algo-
rithm periodically examines the link tracks in the Tdbm. After processing, the output is a
unique set of platform tracks with one-to-one promotions where only one sensor reports a
vessel and many-to-one promotions where multiple sensors report the same vessel. As a
result, only the actual vessels present are presented for display and archiving, and-the best
estimates of position, course, speed and size are used for those determinations.

The details of how the various sensor tracks, radar, ADS and SR, arrive in the

Tdbm for processing are presented in the following

B |

—

Link
Input

Message Pro-
cessing System

A.

Correlator

Fusion
Algorithm

-

Track Database
Manager
(Tdbm)

Broadcasts

H

Alert
Server

Tactical
Plot

|-->

o .

Figure 2.2. JMCIS Software Architecture

Link
Archiver i
RADAR TRACKS

Radar tracks are generated by the Telephonics Radar Processor operating at each

remote radar site in the VTS. The Radar Processor system is composed of two major pro-

cessing elements. First is the Marine Target Extractor (MTE-2000) which performs the

dual, independent functions of target extraction/tracking and scan conversion/image com-

pression. Video imagery from the scan conversion/image compression portion of the

MTE-2000 is not used in this algorithm, so that aspect of this device will not be discussed

further. The second is the Maintenance Display and Control Unit (MDU) which provides a

local control and display device. The limited raw data obtained for this thesis was

recorded by connecting a Hewlett Packard Network Analyzer to the output of the MDU.

[Ref. 8]

The MTE-2000 operates as follows. Radar inputs are accepted from the radar sub-
system and routed to both the target extractor/tracker and scan converter/image compres-
sor. The target extractor/tracker processes this data in the optimal three step process of hit
detection, plot extraction and target tracking to maximize system sensitivity while mini-
mizing the false alarm rate. Radar video is first sampled, passed through Sensitivity Time
Control (STC) and Fast Time Constant (FTC) filters, and subjected to land blanking (to
eliminate unwanted returns) and then a constant false alarm rate (CFAR) detection pro-
cess. Video returns exceeding the CFAR detection threshold are classified as hits, and
passed to the plot extractor along with the other target attributes. A distribution free (DF)
quantizer is used for the CFAR processing to provide a constant false alarm rate indepen-
dent of noise/clutter statistics. A clutter processor (CP) is used with the DF quantizer to
dynamically adjust the detection parameters in preselected geographic area. [Ref. 8]

The plot extractor subsequently integrates hits over the antenna beamwidth using a
sliding window intergrator and passes the resultant target plots to the target tracker. The
target tracker provides target smoothing and tracking using an adaptive Kalman filter. The
tracker provides both manual and automatic target acquisition. The details of the Target
Detection Unit (TDU) and the Target Tracking Unit (TTU) will be expanded in the follow-
ing paragraphs. Once calculated, track data, including target speed, heading and smoothed
position, are output in Synchronous Data Link Control (SDLC) format to both the VTC
and the MDU. [Ref. 8]

The Telephonics Radar Processor is designed to work with the Raytheon, Furuno
and AIL radars in use in the VTS. Plot detection is accomplished by the TDU. It uses a
sliding window detection algorithm to integrate hit data across the antenna beamwidth
using leading edge, trailing edge and confidence count criteria to extract target plots from
those hits thereby achieving CFAR detection. Leading edge (LE) detection is defined as

the number of radar returns (hits) required in a specified window size to determine that a

target has entered the antenna beam. Trailing edge (TE) detection is defined as the number
of hits remaining in the window to establish that the antenna beam has gone past the tar-
get. Confidence count (CC) is the minimum number of hits required in an antenna beam-
width for a target to be declared a plot. This fusion algorithm assumes that these
parameters have been optimized for detection while minimizing the false alarm rate.
Default parameters for each of the radars used in the VTS to establish a false alarm rate of

approximately 107 at the output of the TDU is shown in Table 2.1. [Ref. 8]

i | wse | mar | e [s [oo 1 T re T
Raytheon 1 3600 20 0.45 14 13 5 3 6
2 1800 20 0.45 7 8 4 2 4
3 900 20 0.45 3 8 3 2 3
Furuno 1,2 2100 24 0.95 14 13 5 3 6
3 1200 24 0.95 8 8 4 2 4
4 600 24 0.95 4 8 3 2 3
AlL 1,2 2500 20 0.33 7 8 4 2 4

Table 2.1: TDU Detection Default Parameters. From Ref. [8].

In the next step, the Target Tracking Unit (TTU) uses a range-azimuth (rho-theta)
Kalman filter algorithm to track targets once they have been plotted. Targets must progress
though a three-step process (pairing, developing and maturing) before being output from
the system. First a plot is paired or correlated with another plot on two successive antenna
scans. These target pairs then develop, where there must be a range and azimuth correla-
tion on M of the N next scans. Finally, successful targets are advanced to mature targets.
Mature targets are updated and output every antenna scan and will continue to be tracked
until they are either manually dropped by the operator or outside the radar coverage area.

The track table data reported over the command/status channel to the VTC is current to

10

one revolution of the antenna. [Ref. 8] A number of parameters may be configured to
optimize the MTE-2000 for each radar and site. This thesis assumes valid tracks are being
provided to the VTC Tdbm.

The format of reporting tracks to the Tdbm is shown in Table 2.2 based on infor-

mation in [Ref. 8].

Site | Track Time Crse | Speed Pred | Pred | Rdr | Rdr | Extent | Extent Track
of Rge Az | Rge | Az Rge Az Quality

Nof No fraek | O |) omy |) @) | @ | @m | ©

>
-
~

@ |) © | @[@ ® @ OO t) (&) O || ®|@|
1 1 1512 | 263° 7 23 | 35 | 23 | 36° 5 10° 7 3

2 4 1512 | 90° 10 21 | 127° | 2.0 | 126° N 2° 9

- un @ ™
-n» o N

= - N I - T I

Notes:

* Track numbers (b) are allocated to 1000, then recycled.

» Time of Track (c) is determined by GPS.

* Track Quality (1) is determined as follows: Start at 4 when target matures. Increment by one when
hit occurs. Decrement by one when miss occurs.

* AQ (m): Acquisition Mode. A - Automatic; M - Manual.

* LT (n): Lost track. Set after the maximum number of coasts is exceeded. Indicates that this target is
being dropped. The track number is now free to be reassigned. Can be used in fusion algorithm to
clear track.

* CT (0): Coast track. When set, it indicates that there was no radar hit on that particular scan. After a
predetermined number of misses, the LT bit is set.

Table 2.2: Telephonics Target Track Outputs. After Ref. [8].

B. AUTOMATED DEPENDENT SURVEILLANCE (ADS)

The Automated Dependent Surveillance (ADS) segment to VTS provides the
capability to accept Global Positioning System (GPS) and Differential GPS (DGPS) track
reports and generate and update JMCIS (VTS) tracks based on these reports [Ref. 5]. The
motivation behind ADS is that a vessel’s position, course and identification can be more
easily provided to the Vessel Traffic Center by the vessel itself than solely by the VTC’s
own sensors. With ADS, the vessel sends its information to the VTC over a data link such
as a satellite or digital selective calling (DSC). The National Marine Electronics Associa-
tion (NMEA) 0183 Standard is used as the basis of the “Voiceless VTS” data packet used
to report the ADS tracks. The NMEA 0183 defines a data reporting structure in the form
of data “sentences”. The specific structures to be used by ADS are the extended format
NMEA messages given in Table 2.3. [Ref. 5]

From messages described in Table 2.3, the Vessel Position Report provides all of
the features required by the fusion algorithm less size. The exact size of the reporting ves-
sels can be determined through an Oracle database lookup of the vessel or fusion could be
conducted with the size feature excluded.

The current plan in New York harbor involves data transmission using DSC on
channel 70 at 9600 Baud. The anticipated update rate to the Tdbm is once every three sec-
onds [Ref. 5] for each track. The system is designed to reject any reports that are not
geofeasible. Phase I implementation of ADS, which integrates ADS with existing data

structures, requires that the data in Table 2.4 be available for recording in the Tdbm.

12

NMEA Message Description
DataField 1 | DataField 2 | DataField3 | DataField4 | DataField S | DataField 6 | Data Field 7
RDV Vessel Packet Information Header
Communica- Report Vessel Report 8313
tions communica- Status (name of the
identification tion vessel
(CID) path quality reporting)
VPR Vessel Position Report
CID UTC Latitude Longitude Course over Speed over | Vessel Report
of position (degrees:min- | (degrees:min- ground ground Status
(hhmmss.ss) | utes.decimal) | utes.decimal) | (degrees true) (knots)
GGA Global Positioning Fix Data
UTC Latitude Latitude Longitude Longitude GPS Quality Horizontal
of position (degrees:min- (NorS) (degrees:min- (Eor'W) indicator dilution of
(hhmmss.ss) | utes.decimal) utes.decimal) position
VTG Track Made Good and Ground Speed
Track course | Speed over
over ground ground
(degrees true) (knots)
ZDA Time and Date
Day Month Year
(01 to 31) (01to 12)

Table 2.3: ADS Reporting Data Structure. After Ref. [5].

Data Element Description
Vessel Name
UTC Time of sensor detection
Track ID Tdbm unique track number
Sensor Track Number | Radar Track Number or DSC Number gener-
ated by reporting sensor
Course degrees true
Speed knots over ground
Latitude degrees:minutes:seconds.decimal
Longitude degrees:minutes:seconds.decimal
Tracking Status Radar, SR, ADs, etc.
Size of Vessel
Track Quality GPS quality indicator,
Radar track quality

Table 2.4: Data Elements for Tdbm Track History Recording

13

C. STANDARD ROUTES

Another form of track data that is available to the fusion algorithm is that gener-
ated by the Standard Route (SR) daemon. In the current implementation of VTS, when a
vessel transits from an area of radar coverage, it is assigned to a SR. SRs are multiseg-
mented routes through the AOR of the VTC. Each segment is geographically fixed to
reflect a particular segment of a waterway or harbor. Predetermined vessel classes are
assigned specific transit speeds along each segment to reflect their real world parameters.
Once a vessel is assigned to an SR, the SR daemon updates the position of the vessel every
10 seconds in the Tdbm with a new track report calculated by projecting the vessel’s
course and speed ahead in time along the route defined [Ref. 7]. Initial data for projection
is based on track information previously defined in the Tdbm. The SR is designed to auto-
mate the tracking of vessels as they transit from one coverage area to another.

It is possible to change the way SRs are implemented so that SR tracks are calcu-
lated and made available in the Tdbm whenever a radar or ADS track is present [Ref. 7].
This would have the advantage of providing continuity of platform number as a vessel was
lost to the system from sensors with direct observation. The fusion algorithm would allow
a unique platform number to be associated with the vessel through its transit of the VTS
AOR. Two scenarios where this would be particularly useful are presented below in Figure
2.3. In Scenario One, no overlapping coverage is possible because of a large bridge block-
ing overlap by the two covering radars. Without SRs being produced, the system is unable
to make the association that the vessel that emerges from the far side of the bridge is the
same vessel that was lost and the track dropped on the near side. With SRs implemented,
when the radar track is lost by the near side radar, the platform number will continue to be
associated with the SR on which the vessel is assumed to be travelling. As the vessel

emerges from the far side of the bridge and is acquired by the new radar, the new track will

14

be associated with the SR track and therefore be promoted to the same platform as the SR
thereby receiving the same platform number. With the fusion algorithm, this association
process is automatic. Similarly in Scenario Two, once the radar track is lost, the platform
track continues to be plotted based solely on the SR generated track. As the next radar
acquires the vessel, the SR and new radar track are reassociated and the platform number

1s maintained.

overlapping
coverage

Figure 2.3. SR Utilization Possibilities

16

III. DATA FORMATTING AND PREPROCESSING

Once sensor tracks arrive at the central site, two things need to be done to prepare
the tracks for the fusion algorithm. First, the relevant features of latitude, longitude,
course, speed and size need to be obtained. Second, once the data has been prepared, it

needs to be windowed to reduce the amount of data to be fused.

A. DATA FORMATTING

As discussed in the previous chapter, data for the fusion algorithm are provided
from a number of sources or sensors. These include tracks generated by the Telephonics
radar processor, ADS, and the internally generated SRs. These sources can be thought of
as independent sensors providing information to be fused. In order for fusion to take place,
however, the data need to be converted into the appropriate format. This requires extrac-
tion of the relevant features of latitude, longitude, course, speed and size. The preprocess-
ing required is dependent of the type of sensor providing the data. The data format and

preprocessing requirements for each sensor are now discussed.

1. Radar Tracks From Remote Site Processors

The data from the Telephonics RSPs are run length encoded in the SDLC format
for transmission to the central site over either a T1 link or a microwave link. The actual
data have the format as shown in Figure 3.1 when received by the central site. Illustrated

is the header information (circled) and one complete track report (dashed box).

17

GESF3GGESHL8Y0F000F637000C060C0*

0p3F001510004F10EF10*
00C0AGESF3GGESFL80C000 ER I TH I
1_00_9§gffFFggffF3 00040016D5D0133*

104110034GGESF3GGESF18000000F00*
6349230C9ggffFFggffF30002001793*
050B130C120044GGESF18000000F20B*
041FC010CB3009ggffF30001001788A*

Figure 3.1. Data Format from Telephonics RSP
The data are transformed into the format presented in the previous chapter in Table
2.2 by the JMCIS software. Once the track records have been converted into the suitable
ASCII format, additional refinements are carried out to reduce the amount of data that

needs to be retained and to extract the relevant features for fusion.

The following preprocessing was performed on the radar tracks to produce the out-

put presented in Table 3.1:

* Latitude and longitude were calculated knowing the location of the reporting
radar and the smoothed range and bearing of the vessel given in the radar track.

* Course and speed were directly carried over from the transmitted output of the
RSP Kalman filter.

* The size feature was computed by calculating the depth of the target from the
extent range and the breadth of the target knowing its extent azimuth and cent-
roidal distance from the radar. Depth and breadth were then multiplied together
to provide a size feature in m2.

* Reporting site and site dependent track numbers were then concatenated

together to form a unique track identifier in the system.

* GPS track time as recorded with the track was kept.

18

* Lost track (LT) was kept as an indicator.

* Track quality (TQ) was kept to provide a weighting factor when comparing the
reliability of two tracks and to use as a modifier in the centroidal fusion process

of the algorithm.

2. ADS Tracks

Minimal preprocessing is required with ADS generated tracks as the GPS latitude,
longitude, course and speed are reported in the desired format. The size of the vessel can

be determined through a query of the Oracle database where relevant details of ships in the

AOR are kept.

3. SR Tracks

Similarly, little additional processing is required for SR generated tracks. The SR
inherits the location, course, speed, and size of the vessel from the Tdbm when the SR
track is started. The course and speed continue to be updated according to the SR

attributes assigned to that leg for that vessel class.

19

Site &

Latitude | Longitude | Course | Speed | Size Track Time | LT | TQ
(rad) (rad) (deg) | (kts) (mz) STIT | (sec)
0.0005954 | -0.0007387| 204.8] 1.06{3620.2! 1004{51057| o 9
0.0001867 | -0.0004711 17.8] S5.12| 537.1| 1002{510.73| o 9
-0.00010321-0.0002289 35.1| 0.12|4152.3} 1001|511.04] o 9
0.0005954 | -0.0007387| 200.2| 1.06|3620.2| 1004{513.12] of 9
0.0001872 | -0.0004697 17.7) 5.12)1143.3| 1002513271 Of 9
-0.0001033 | -0.0002289 | 314.2| 0.12|1135.6| 1001|513.59] o] 9
0.0005951| -0.0007389 | 199.6| 1.06|3754.2| 1004|51567| 0| 9
0.0001879 | -0.0004682 189| 5.06| 855.5{ 100251582 o 9
-0.0001033 | -0.0002289 | 337.1| 0.12{2129.3{ 1001}516.14] o] o9

Table 3.1: Telephonics Data After Preprocessing

20

B. WINDOWING

Once the data has been preprocessed into the desired format for fusion, it needs to
be windowed to reduce the amount of data required to be processed. The fusion algorithm
can accept tracks from any sensor that can provide the necessary features. The following
example uses radar track data obtained from the Telephonics MTE-2000 at the Electronics

Engineering Center in Cape May, NJ to illustrate data windowing.

1. Select an N Second Window

Table 3.1 is the result of preprocessing the data set with ReadData.m
(Appendix C, page 100). The gray boxes indicate the data selected by a six second win-
dow imposed on the data. Figure 3.2 graphically shows the process of applying a time

window to the data arriving at the Tdbm.

In the simulation, a 15 second window was used. Windows can be of any length,
but the optimum is to be only long enough to account for any latency of reporting due to
communications and computation delays from sensor to Tdbm. The aim is to include the

most recent reports from sensors providing overlapping coverage.

21

Sensor Tracks
Arriving in
Tdbm

M-N=524-6=1518 (sec) M =524 (sec)

Figure 3.2. Illustration of an N Second Data Window
Table 3.2 was produced by applying timeWindow.m (Appendix A, page 55) to the

data set in the previous table with N=6.

. X . Site & | ..
Latitude | Longitude | Crse |Speed | Size Track Time | LT | TQ
(rad) (rad) | (deg)| (kts) | (m? |STTT| (sec)

0.0005958 | -0.0007398 |1 199.2| 1.06(2416.3| 1004(518.21

0.0001883 } -0.0004668 | 19.2| 5.12(924.7| 1002|518.37

-0.0001033 } -0.0002289 f 352.3| 0.06(2235.7| 1001(518.68

0.0005956 | -0.0007401 | 197.2| 1.06(6577.7| 1004 |520.75

Olo|o|lo|®
Clwlw|wvo|w

0.0001891 | -0.0004665]| 19.3| 5.12[1138.1(100252091

Table 3.2: Six Second Data Window

22

2. Select Most Recent Tracks

Figure 3.3 illustrates the selection of only the most recent tracks generated by each
sensor. This produces a unique set of tracks that can be correlated to determine which ones

should be associated with each other.

Most Recent Sensor Tracks
in Window

Sensor Tracks
Arriving in
Tdbm

/

M-N=524-6=518 (sec) M = 524 (sec)
Figure 3.3. Most Recent Tracks

Table 3.3 shows the result of applying mostRecentTracks.m (Appendix A,

page 56) to the data in the previous table. Only unique tracks are carried forward.

Site &

Latitude | Longitude | Crse | Speed| Size Track

Time | LT | TQ

(rad) (rad) | (deg) | (kts) | (m?) (sec)

-0.0001033 | -0.0002289 | 227.5| 0.061561.5] 1001}521.23] 0| 9

0.0001893 [-0.0004652| 19.2| 5.12{1277.5 1002|523.46] 0] 9

0.0005953 [-0.0007403 [199.21 1.06(3423.1| 100452330 O 9

Table 3.3: Most Recent Tracks in Data

23

In summary, sensor data received from different sensors are first converted into a
unified format. Then, the track data is windowed to extract only the most recent tracks,
which also results in data reduction. Once the data set has been reduced, data association

can take place as presented in the next chapter.

24

IV. ALGORITHM

With the relevant features extracted and the most recent sensor observations iso-
lated, the sensor tracks are now ready to be correlated and fused where necessary. This
chapter first presents an overview of fuzzy association as it applies to fusion and then

details its application to the VTS problem.

A. FUZZY ASSOCIATION FOR FUSION

The goal of the fusion algorithm is to combine or fuse tracks of the same vessel
observed and reported to the system by different input devices whether from radar proces-
sors, ADS or some other mechanism. These fused tracks can then be associated with a
unique platform identifier represented in the system by a unique platform number and a
unique platform icon. The fuzzy membership is used to achieve this fusion. The member-
ship function from fuzzy set theory provides a mechanism to measure correlation between

observation or track pairs.

Data fusion is a process dealing with association, correlation and combination of
data from multiple sources to achieve a refined position and identity estimation. [Ref. 3]
The aim of the data fusion is to derive more information in the final result than is present
in only a single source of information. The combination of multiple sensors has the added
benefit of redundancy of reporting. The failure of a single sensor then is not critical for
coverage of an area. In addition, multiple sensors provide improved spatial coverage of an

area with improved resolution over that offered by a single sensor.

Data fusion is usually classified into three types: positional fusion, identity fusion

and threat assessment. [Ref. 4] Positional fusion endeavors to determine an improved

25

position estimate of a target by combining parametric data, such as azimuth, range, and
range rate. Identity fusion uses known characteristics to determine the identity of a target.
[Ref. 3] Threat assessment is the highest level of data fusion and is used for military or
intelligence fusion systems to determine the meaning of the fused data from an adversarial
point of view. [Ref. 4] The application of data fusion to JMCIS and VTS requires only

positional fusion, and the method by which this is achieved is discussed further here.

B. POSITIONAL FUSION

Initial positional fusion is accomplished by the Adaptive Kalman filter tracker
operating at each remote radar site. This is considered sensor level fusion. The proposed
algorithm assumes that the sensor level fusion is being performed correctly and that valid
tracks are being generated and sent to the central site for further processing. Central level
positional fusion is performed at the central site with the aim of eliminating the redundan-
cies in observations or tracks being generated by each of the sensor level fusion algo-
rithms. These redundancies occur when there is overlapping coverage provided by sensors
(i.e. two radars that cover the same waterway). Each radar gets returns on the target, starts
a track and forwards the track information to the central site for display and historical

record keeping.

As presented in previous chapters, additional redundant observations can result
from the input of tracks from the Automated Dependent Surveillance (ADS) system [Ref.
5] or generated estimated positions (EPs) for vessels based on Standard Routes (SRs) gen-
erated by the Predictive Decision Support Aids (PDSA) [Ref. 2]. Each of these vessel
observations appear in the Tdbm database [Ref. 6] along with a date/time stamp. Each of
these sources of track information include sufficient information to generate the foliowing

attributes: position (latitude and longitude), course, speed and size.

26

Figure 4.1 shows how the data set is reduced as it flows through the algorithm.

Create s
Feature Vector 5
(Conversion/ 5
Extraction) o &
e E
]
50
.5
Windowing
=
8
S o
Select Most Recent LE ﬁ"-_“
Track For Each)
Radar = S
= O
oM
l & g
L <
b7,
Fusion
Association
c
o
47
£
$omi
L
o=
<
Tdbm
Interface

Figure 4.1. Fusion Algorithm Flow
The fuzzy association system takes these attributes and makes assignments of
membership or similarity by correlation. This is accomplished as follows. Fuzzy set the-
ory considers the partial membership of an object in a set. A membership function, ju(x), is
used to grade the elements of a set in the range [0,1]. The grade of membership is a mea-
sure of the correlation of an object to a defined set. The closer the object is graded to one,
the higher the membership of the object is in the set and the more compatible the object is

with the set being considered.

27

Design of a fuzzy association system involves the following four steps: [Ref. 1]
* Determining the universe of discourse of inputs and outputs.

* Designing membership functions.

* Choosing fuzzy rules to relate the inputs and outputs.

* Determining a defuzzifying technique.

When comparing the latitudes of two separate radar tracks to see if they are similar
a geometric membership can be constructed that takes into account the errors present in
the system inherent to each remote site generating a track. A triangular shaped member-
ship function as in Figure 4.2 is a good choice for a positional comparison because of the

accuracy of radars in reporting the target position.

If the latitude of one track is
250 m greater than that of the
track it is being compared to, a
membership value of 0.5 is

o
= generated.
8 05 bl .. .
E X +1
é') - 500
0
-500 m i +500 m
+250 m
Reference

Position
Universe of Discourse
Figure 4.2. Position (Latitude/Longitude) Membership Function
In the example, the latitude given in one track is subtracted from the latitude given
in another track held as the reference. The difference in latitude is used to determine the

membership value.

28

Figure 4.3 shows the membership functions used in the algorithm.

Lat and Lon Course

membership

=3 =3 =}

kS o 00 —
membership

I g e

P =3 % -

o
[
=3
N

0 0 g;
-1000 ~500 0 500 1000 -50 0 50
meters degrees

Speed Size

—
—

membership
o o o
ES o o

membership
e o o
P o o0

o
)

0.2}

(=]

-5 0 5 -6000 —-4000 -2000 0 2000 4000 6000
knots square meters

Figure 4.3. Membership Functions Used in Fuzzy Associative System

In gcnerﬂ, the design of membership functions is based on the attributes inherent
to those aspects being compared. Since both radar and ADS positions reported to the sys-
tem are relatively accurate, the triangular membership function is appropriate. For other
attributes where there is less accuracy such as in speed or size, broadening the roof of the
membership function to include a greater range of values is valuable. It is also useful to
truncate the membership function at a given value as in the case of the Course Member-
ship Function creating a trapezoidal shape to allow a generous association within a reason-

able range of values but not outside of a fixed range.

29

Next, in order to evaluate each of the membership values returned, a threshold
needs to be established that reflects the physical limitations. In the case of the radar
returns, a variable threshold is set that takes into account accuracy limitations of the radar
dependent on the range of the target. Figure 4.4 graphically depicts the variable threshold
employed in the simulation. The code that implements this function is thresh.m

(Appendix A, page 60).

Threshold

1 5
Distance (Nautical Miles)

Figure 4.4. Variable Threshold Functions
Once all of the attributes for the track pair being assessed have been assigned
membership values, they can be checked to see that they exceed the designated threshold.
Each value is checked sequentially starting with latitude to ensure that it exceeds the
threshold. If it does not, no further checks are made and association fails. This method has
the advantage of computational efficiency. If all values exceed the assigned threshold,

association is made as indicated by a binary output of ‘1’ from the defuzzifier.

Figure 4.5 schematically shows the action of the fuzzy associative system. If the
membership values, 6;, all exceed the single threshold, ¢, the two tracks would be associ-

ated. If the ¢ exceeds any of the 8;, no association would be made.

30

INPUT
Two Track
Feature
Vectors
for
Comparison

IF Latitude close
THEN same Vessel
e] ‘ ’ j elat > q)? —T
al
AND
IF Longitude close
THEN same Vessel
) elOl’l > ¢? .
lon D i}
AND
IF Course close
THEN same Vessel
> 0 Ocrse > 97 e
AND
IF Speed close
THEN same Vessel
L Ogpeed i espaecl > ¢? -
AND
IF Size close
THEN same Vessel
A T
Size
Minimum
Defuzzifier

Figure 4.5. Fuzzy Associative System

BINARY
OUTPUT
Same
Vessel
(1)
or
Not Same
Vessel

()

In the fusion algorithm, the membership determination is made by the function

memshipWSize (Appendix A, page 57) along with the variable threshold calculation per-

formed by thresh.m (Appendix A, page 60). The membership values of all of these com-

parisons are stored in matrix memshipValueOfTrk, and the associated thresholds in

thresholdMatrix.

The process of defuzzifying the results is accomplished with associationMatrix.m
(Appendix A, page 61) where all the membership values are checked against their respec-

tive thresholds. The result is returned in assocMatrix.

The final step in the track fusion process is to fuse tracks that need to be fused
based on the binary decisions stored in assocMatrix. This task is accomplished by
relateTracks.m (Appendix A, page 62). The result is a single unified set of tracks repre-
senting a unique set of vessels present in the system in that time window. In the fused
tracks, the original reporting sensor and its assigned track number are maintained for

archival purposes as well as to assist in maintaining a unique platform number.

C. DATABASE FUSION

The data set is now ready to be used to update the Tdbm. The routine that performs
this is TdbmInterface.m (Appendix A, page 64). The site and track number field is used
to determine if this track being added is new to the system. If the search of the site and
track number field in the Tdbm is successful, the associated platform number is appended
to the track in question. If the search fails, a new platform track number is generated and

the operator can be alerted to the new “unknown” track.

At this point the multilevel sensor fusion cycle is complete. The output of the vari-
ous sensors have been related to each other, and the unified set has been related to the pre-
vious sets (the Tdbm). The data window can now be moved forward in time to gather in
the next batch of sensor tracks and the process repeated. The next chapter will describe the

simulation used to test the algorithm.

32

V. RESULTS

Attempts to acquire actual overlapping coverage data from the VTS system were
not successful due to technical difficulties. As mentioned, only a limited amount of single
coverage data was obtained. The data used in Chapter III to illustrate windowing was the

result of applying the code detailed in Appendix C to raw single site data.

As an alternative to working on real data, a simulation was created to provide sen-
sor tracks similar to the link tracks available in the Tdbm for the fusion algorithm to oper-
ate on. The area chosen for this simulation was the Upper Bay of New York Harbor
whereby the Governor’s Island and Bank Street radars provide overlapping coverage as

depicted in Figure 5.1.

A. SIMULATION CONSTRUCTION

A Simulink simulation module was created to model vessel traffic transiting this
area. Figure 5.1 through Figure 5.4 depicted the estimated tracks produced. Vessels were
modeled with a speed of 10 knots and a turn rate of 45 degrees in three minutes. The sim-
ulation used Runge-Kutte 45 integration to compute the smoothed trajectory. The vessel
position in terms of latitude and longitude was recorded at three second intervals of simu-
lation time. This time interval reflected the actual expected update rate of track reporting

to the VTC. The model is described in detail in Appendix D.

Four separate vessel tracks were generated and processed by the Multitarget Kal-
man filter presented in Appendix B. Before being processed by the filter, noise was added

to the measurements by converting them to spherical coordinates and adding appropriate

33

range and bearing variance to each set of measurements [Ref. 9]. The noise was modeled
as follows:

* Range variance was based on 7 meter range bins and a uniform distribution;

* Bearing variance was based on taking 50 percent of the Half Power Beamwidth
(HPBW) of the receiving radar and assuming a uniform distribution.

With noise added, each set of measurements was processed by the Kalman Filter.
Filtering was performed with a q = 10 for slowly maneuvering targets [Ref. 10]. Filtering
for each data set was performed from the perspective of the radar at Governor’s Island
Radar (Radar 1 in the simulation) and again from the perspective of Bank Street Radar

(Radar 2).

The actual GPS survey locations for these sites were used to calculate measure-
ment associations. The complete data sets were then truncated to provide a region of over-
lap only in the box defined by 39°N to 40.5°N and 02°W to 04°W. Although the real
overlapping regions of coverage for these two radars is circular from the perspective of
each radar, rectangular coverage served the purpose of illustrating where fusion should

occur.

The data set at this point contained the variance present in the system for position
(latitude and longitude), course and speed. The positional noise for each track can be seen
in Figure 5.5 where the miss distances from the actual vessel trajectory are plotted. Course
and speed were calculated using the mean of a three point moving average over one
minute of simulation time. Figure 5.6 and Figure 5.7 show the output of the filter calcula-
tions for course and speed at each point. The boxes with the track numbers indicate the

portions of the data set that were kept after truncating for geographic coverage.

34

In order to model the variance typical in the size feature as reported by radar pro-
cessors, a statistical analysis was conducted on the limited data set provided by EECEN.
Size was a difficult parameter to accurately model because of its dependence on not only
the aspect of the vessel presented and the distance of the vessel from the reporting radar,
but also the variance in range and bearing variance of the observing radar. From the analy-
sis, it was determined that to achieve roughly the same distribution, the size could be mod-
eled with a normal distribution out to one standard deviation below an arbitrary mean size
and two standard deviations above. The size feature was randomized accordingly.

Figure 5.8 shows the histograms of the size features used for each vessel.

The resulting tracks were then combined into one unified track table representing
sensor tracks in the Tdbm. Figure 5.9 shows the plots of each of the tracks. The fusion
algorithm was then fed tracks as determined by a sliding 15 second time window moving
at three second increments. An animation was generated to monitor the progress of the
fusion algorithm. Figure 5.10 through Figure 5.12 show snapshots of the output of the
algorithm plotted at every fifth (15 second) point. Where fused tracks have been plotted,

the originating sites and tracks numbers are shown concatenated together.

The output of the algorithm was appended to the Tdbm at each iteration. Indepen-
dent redundant databases of tracks fused and tracks not fused were generated to simplify

performance analysis of the algorithm.

B. RESULTS

The algorithm performed correctly under all test scenarios. The test scenarios were

as follows.

* Vessels moving in and out of the overlapping cover area (Figure 5.10 and
Figure 5.12).

35

* Vessels crossing within multiple coverage area with closest point of approach
of 100 meters (Figure 5.11).

* Two vessels of differing deterministic size with the same Iocation, course and
speed.

Plots of the resulting fused and not fused tracks are presented in Figure 5.13 and,
in a magnified view of the overlapping region, Figure 5.14. The following results were
observed: |

* The algorithm correctly fused all tracks within overlap region.

* The fusion algorithm was able to discriminate vessels with identical position,
course and speed but of different size when the size feature was deterministic.

* The algorithm was also able to correctly fuse tracks with similar features
within single coverage areas.

One of the key observations was the effect of the design of the individual member-
ship functions. If the range of the membership function was not sufficiently broad, partic-
ularly in the case of the stochastic size parameter, the decision to fuse two tracks was not

made.

In summary, the algorithm correctly identified unique tracks and associated a
unique platform number with them which remained consistently associated as the vessel
transited through multiple coverage areas. The algorithm did fuse N tracks correctly where
2N duplicate tracks were present in the system. Figure 5.15 shows the resultant unique

platform tracks generated and stored in the Tdbm.

36

Radar 1 Tracks

Radar 2 Tracks

05w 04w Q3W 2w 01w

Figure 5.1. Estimated Tracks For Vessels A and B

Radar 1 Tracks

Radar 2 Tracks

wl

03w 02w

Figure 5.2. Magnified View Of Vessels A and B Tracks

37

[e] Radar 1 Tracks
+ Radar 2 Tracks
oSl

05w (O 03w 0w 01w

Figure 5.3. Estimated Tracks For Vessels C and D

Radar 1 Tracks

Radar 2 Tracks

03w 02w

Figure 5.4. Magnified View Of Vessels C and D Tracks

38

Radar 1 On: Est Dist Error fex Stups | & % q = 10 & bearing vas = 008 degrees

Micz Digtanc: (m)

Miez Ditauce (m)
14

44444 Single Run Distance Errcr Ship 1

Singte Run Distance Burar Shp 2

0)

Hi
400
time step = 33e¢

Kalman Output of Radar 1
on Vessels A and B

Radat 1 On: B« Drist Essor {or Ships § & 2:

- Singte Run Distance Brrcr Ship |
—— Sungle Run Distance Estet Ship 2

Radar 2 On: Est Dist Esrcs for Shps 1 & 2

o Ralu2OmEnDinEnc o Shes 1§ 2geI08 g0 kg
«vvuo Single Run Dustance Ercor Ship 1
Singte Run Dustance Ertor Ship 2
30
E 2l
s |3
H N
454
b
H 1 1 A !]
0 200 400 00 300 1000 1200 1400 1600 130
ume step = 3 sec
Kalman Output of Radar 2
on Vessels A and B
M Radar 2 On: Ext Dist Exzor for Shiga 1
----- Single Run Distance Burcr Ship 1
—— Single Run Distance Estct Ship 2
335

NIV PRTTION

Misz Dizancs (o)
8

B
1000 1200 1400 1600 18
tims step =3 se¢

Kalman QOutput of Radar 1
on Vessels C and D

tim: stepu 3 sec

Kalman QOutput of Radar 2
on Vessels C and D

Figure 5.5. Miss Distances from Actual Track

39

145 115
110
140
105
2z T
. 100
%135 gb
= 2 93
g 130 4
: £ %
&) Q
85
125 \w W
1001 i 50
120 75
500 1000 1500 2000 0 200 400 600 800 1000
Time (sec) Time (sec)
115 115
11 11
210.5 gm.’»
g)
< 10 =10 W
B T
2 &
@95 @ 95
9 9
1001
8. 8.5 -
200 400 600 800 1000 1200 1400 1600 100 200 300 400 500 600 700 800
Time (sec) Time (sec)
Calculated at Radar 1
145 115
110
140
—- ~ 105
7 g
1
é" éhmo
L7 o
g 130 g o
< <
Q] 90
125
35
2001 2002
120 30
0 500 1000 1500 2000 0 200 400 600 800 1000
Time (sec) Time (sec)
11.5 115
11 n
% 10.5 % 10.5
8 8
S o J‘WW%WMMW S 10 “
8 g
A= o
A g5 295
9 2001 0 2002
8.5
200 400 600 800 1000 1200 1400 1600 100 200 300 400 500 600 700 800
Time (sec) Time (sec)

Calculated at Radar 2

Figuré 5.6. Calculated Course and Speed of Vessels A and B

40

(1Y) 1
143 100
2 140 =7
o o 90
5135 5
Z T 35
% 130 ¢ f.
;. " 1004
120 1003 70 Hiptehogi sons s mrine
115 63 n -
500 1000 1500 2000 0 300 1000 1500 2000
Time (sec) Time (sec)
11.5 11.5
n 11
@ 10.5 % 10.5 ‘I
< o
5l S oA e
\?: 10“ ‘_8’ 10 l F
2 2
2 95 2 95
9 9
1003 1004
3.5 8.5
500 1000 1500 2000 500 1000 1500
Time {sec) Time (sec)
Calculated at Radar 1
150 105
145 100
95
7140 T
@ o 90
] &
%135 T 85
£
& 4
3 R
&30 8 80
75
125
2003 ™ 2004
120 65
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (sec) Time (sec)
11.5 115
11 11
% 10.5 5 10.5
g g
gy \‘ W £ oltbype
g 2
2. (=%
“ 95 2 95
’ 2003 ° 2004
8.5 8.5
500 1000 1500 2000 500 1000 1500
Time (sec) Time (sec)

Calculated at Radar 2

Figure 5.7. Calculated Course and Speed of Vessels C and D

41

Ship A Ship B
250 : 250 ~ :
200 200}
150 _ 150}
= =
= 2
Q =}
o 5]
100 : 100
) HHH HHH | i HH H |
LI ’ LIl : AT
00 700 800 900 1000 1100 1200 500 1000 1500 2000 2500
meters meters
Ship C Ship D
80 : 250 :
70
200 |
60
U0 150
= =]
g 8
20
50
. 10 | [
0 . : ol A1l ' :
1000 1500 2000 2500 3000 2000 3000 4000 5000 6000

meters meters

Figure 5.8. Size Feature Histograms

42

4N

w

JON

ION

03w (G2 03w 0w [N U3W P3N W oW (U

Track 1001 Tracks 2001 and 2002

3

ey X
G
SIS
R

UsW GV W 0w uaw

3w

Tracks 1003 and 1004 Tracks 2003 and 2004

Figure 5.9. Tracks Input to Fusion Algorithm

43

585 sec

870 sec

Figure 5.10. Fusion Algorithm Output at Time 585 and 870

44

Figure 5.11. Fusion Algorithm Output at Time 975 and 1125

45

Time: 1335 sec

© : y 01w

0w

Figure 5.13. Post-Fusion: Fused (magenta) and Not Fused (cyan) Tracks

46

a

v

03w

Figure 5.14. Post-Fusion: Fused Tracks in Overlap Region

DSW) 01w

Figure 5.15. Post-Fusion: Unique Platform Tracks From Tdbm

47

48

VI. CONCLUSION

A. DISCUSSION OF RESULTS

The algorithm performed as expected, fusing tracks that represented multiple cov-
erage of single vessels to produce a unified set of platform tracks in the Tdbm. This set
represents unique vessels reported to the system. Variance in the parameters of each of the
features strongly effects the range and shape of each of the membership functions used to
determine association. The more accurately known the variance of a specific feature, the
more precise the design of the membership function can be. The result is more accurate
association of tracks. The fusion algorithm was computationally efficient and could accu-
rately discriminate vessels. The algorithm could also handle an arbitrary number of ves-
sels from an arbitrary number of sensors of arbitrary type as long as they were capable of
providing some of the five features used for fusion. The algorithm can be easily modified
to turn off the evaluation of specified features if those features‘are not present in the

reported tracks. The algorithm can also be modified to add additional features.

B. SUGGESTIONS FOR FURTHER DEVELOPMENT:

1. SR Implementation

The mechanism by which SRs are generated and stored within the Tdbm can be
modified to allow them to be computed whenever a radar track or ADS track is present.
This would allow continuity of platform number and tracking whenever there is a gap in
physical sensor coverage of the vessel.

2. Integration into JMCIS

The fusion algorithm was written with the intention of future integration into

JMCIS and the VTS implementation. Most of the preprocessing requirements are already

49

implemented in JMCIS and VTS. The primary additional code required is the ability to
calculate a size feature. This involves some simple calculations or a call to the VTS Oracle
database. As the fusion algorithm consists mainly of IF-THEN-ELSE constructs, it will
benefit from recoding into the C language. Interface with the Tdbm to update with new
sensor track information will be straightforward using the calls defined in the Tdbm
Application Programmers Interface [Ref. 6].

3. Membership Function Design

When real sensor track data is available, statistical analysis of each of the features
should be conducted. The membership functions presented could then be either validated

or modified to ensure proper track association.

C. SUMMARY

This thesis is a continuation of a previous thesis [Ref. 1] to construct a data fusion
algorithm capable of fusing data from multiple sources to produce a unique track table that
represents a unique set of vessels transiting the system each designated with a unique
identifier, the platform number. The United States Coast Guard will be able to implement
this algorithm at their Vessel Traffic Centers to reduce the workload on both the system
and the operators. This will allow for the operators to focus on the flow of traffic with less
distraction, the implementation of automatic alarms (collision, etc.), and the keeping of a

more accurate historical database than is presently kept.

50

This appendix lists the following code for the fusion algorithm:

APPENDIX A. ALGORITHM CODE

FusionAlgorithm.m on page 52..
timeWindow.m on page 55.
mostRecentTracks.m on page 56.
memshipWSize on page 57.
thresh.m on page 60.
associationMatrix.m on page 61.
relateTracks.m on page 62.
TdbmlInterface.m on page 64.
randomSize.m on page 66.
showChartl.m on page 69.
inputPlots.m on page 72.
animationPlots.m on page 74.
outputPlots.m on page 76.

plotMembership.m on page 78.

51

FusionAlgorithm.m

%

% FusionAlgorithm.m

%

% Written by: Major Ian Glenn

%

% Created: 20 Oct 95

% Modified: 22 Nov 95

%

% Input:

% Il - Track data from Telephonics Remote Processor
% 12 - Simulation data
%

% Output:

% 01 - Tdbm

%

%

% Design:

% load the simulation/test data and run the Fusion algorithm on it
%

% Calls:

% For Preprocessing of Telephonics Radar Data
%

% ReadData.m

% tracks3.m

% hex2bstr.m

% printPretty.m

% simpleCoordConv.m

% naut2mathRad.m

% rads2DMS.m

%

% For Randomizing the Size Feature of Simulation Data
%

% randomSize.m

%

% For Fusion of Track Data
%

% timeWindow.m

% mostRecentTracks.m

% memshipWSize.m

% associationMatrix.m

% relateTracks.m

% Tdbmlnterface.m

%

% For Plotting Results

% inputPlots.m

% animationPlots.m

% outputPlots.m

clear Tdbm

plotNotFusedTrks = []

plotFusedTrks =[]
PlotMe
RandomSize =1
MovieOn

Preprocess =0
Simulation = 1

if Preprocess ==
ReadData
end

=2
% 1if want to randomize the size input

=0

% If using real preprocessed data set to 1
% OR if using simulation data set this to 1

if Simulation == 1% Prepare simulation data

52

if exist(‘“TrackTableRdr1’) == 0
load TrackTableGla.mat;
end

if exist(‘TrackTableRdr2’) == 0
load TrackTabieBanka.mat;
% delay the start of vessel track 2002 by 2 minutes or 120 seconds
TrackTableRdr2(find(TrackTableRdr2(:,6)==2002),7) = ...
TrackTableRdr2(find(TrackTableRdr2(:,6)==2002),7)+120;
end

if exist(“TrackTableRdr1b’) ==

load TrackTableGlIb.mat;
end
if exist(‘TrackTableRdr2b’) == 0
load TrackTableBankb.mat;
end

if RandomSize == 1
if exist(‘ObsnMatrixRandSize’) == 0

randomSize
end
ObsnMatrix = ObsnMatrixRandSize;
else
ObsnMatrix = [TrackTableRdr1;TrackTableRdr2; TrackTableRdr1b;Track TableRdr2b];
end
if PlotMe >=3

inputPlots(TrackTableRdr1,TrackTableRdr2, TrackTableRdrl1b,...
TrackTableRdr2b, ObsnMatrix)
end % end PlotMe

end % end Simulation
if PlotMe >=1
figure(6)
showChart1
end % end PlotMe

startTime =min(ObsnMatrix(:,7)) % start at the earliest time in ObsnMatrix

windowSize = 15; % Number of seconds to include in window
windowStart = startTime +3 % Take first 3 seconds of sensor data
endTime = max(ObsnMatrix(:,7))% run to end of ObsnMatrix

for window = windowStart :3:endTime% Slide the window in 3 second increments

Gl ¥4k sk ek sk WindOWing ek ok 3k 3k ok ok e ke sk ok sk

% Once the data is available, it is windowed to extract the relevant tracks
% In a specified time interval by timeWindow.m

WindowedObsns = timeWindow(ObsnMatrix,window,windowSize);

% Note: the reduced matrix may be seen with printPretty(WindowedObsns)

%
% The next step is to extract the most recent observation appearing in the
% windowed data.

[MostRecentTrks] = mostRecentTracks(WindowedObsns);

% Fusion oksokokodok
% Membership
% The track data is now ready to be fused together
% The first step is to compare each track with every other
% track to determine it’s threshold and membership
% with the functions memshipWSize.m
% and thresh.m

% Note the values of 0.9 and 0.5 being used for the variable

53

end

%

%

% threshold
[memshipValueOfTrk, thresholdMatrix] = memshipW Size(MostRecentTrks, 0.9, 0.5);

Association

% With the information in memshipValueOfTrk and thresholdMatrix
% the association of tracks can take place using

% associationMatrix.m

assocMatrix = associationMatrix(memship ValueOf Trk, thresholdMatrix);

Relating Tracks

% Now comes the task of relating tracks. This means updatingthe
% matrix that relates the track from one radar with the

% track from another radar.

% relateTracks.m fuses the necessary vectors.

% Tracks that do not require fusion are appended to create

% the updateTrks matrix

[updateTrks,fusedTrks,notFusedTrks]=relateTracks(MostRecentTrks,assocMatrix);

plotNotFusedTrks = [plotNotFusedTrks;notFusedTrks};

plotFusedTrks = {plotFusedTrks; fusedTrks];

% Note that plotNotFusedTrks and plotFusedTrks are kept separately only to simplify
% to simplify display later and are not required for fusion.

Plot Animation of fusion by plotting every fifth point (15 sec) for each track
if PlotMe >=1

animationPlots(updateTrks,fusedTrks,notFusedTrks)
end % end PlotMe

Updating the Tdbm (Track Database Manager database)
% This involves a search for previously reported sites and tracks.

% If found, the same Platform Number is assigned. If not a new

% Platform Number is generated. The Platform Number is the unique
% identifier that will be associated with the Platform Icon

% for display to the operator.

[Tdbm,nextPlatformNo}=TdbmInterface(T\ dbm,updateTrks,nextPlatformNo);
% printTdbm(Tdbm);% display of Tdbm if desired.

% end of main routine: fusion iteration window

if PlotMe >=1% plot the results at the end.
outputPlots(plotNotFusedTrks,plotFusedTrks, Tdbm)
% end PlotMe

end

54

timeWindow.m

function WindowedObsns = timeWindow(OrigObsnMatrix,timeNow,windowLength)

%
%
%
%
%
%
%
%
%
%
%
%
%
%o
%
%
%

rows= find(OrigObsnMatrix(:,7)<=timeNow & OrigObsnMatrix(:,7)>=(timeNow-windowLength));

function WindowedObsn = timeWindow(OrigObsnMartix timeNow,windowLength)

by: Major Ian Glenn
Created: 10 Sep 95
Modified: 20 Oct 95
Input:

OrigObsnMatrix:original obsn matrix to be windowed
timeNow: time (in sec) to window from
windowLength:number of seconds to window back in time

Design:
find the rows that meet the time criteria
and create the new windowed matrix

WindowedObsns=0rigObsnMatrix(rows,:);

55

mostRecentTracks.m

function [MostRecentTrks] = mostRecentTracks(ObsnMatrix)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

function [MostRecentTrks] = mostRecentTracks(ObsnMatrix)

by: Major Ian Glenn

Created: 29 Aug 95

Modified: 20 Oct 95

Input:

Il - ObsnMartix:original obsn matrix to be windowed
Output:

01 - MostRecentTrks

Design:

This function determines which tracks are present and how many
in a given set of tracks and plots the distribution
and returns the matrix with the most recent observations

MostRecentTrks=[];

[TracksSorted,trackIndx] = sort(ObsnMiatrix(:,6));% Sort on field 6 (track)

% Find the redundancy in a vector x

difference = diff([TracksSorted;max(TracksSorted)+1]);
trackCount = diff(find([1;difference]));
tracksPresent= TracksSorted(find(difference));

% A little graphic feedback
Jestem([tracksPresent),[trackCount]); grid;
Joaxis([0 max(tracksPresent)+1 O max(trackCount)+1])

%

It is now easy to select the latest value for each track with

% trackIndx(trackCount(1))

for i=1:length(tracksPresent)
MostRecentTrks=[MostRecentTrks;...
ObsnMatrix(trackIndx(sum(trackCount(1:0))),:) I;
end

56

memshipWSize

function [memship ValueOfTrk, thresholdMatrix] = memshipWSize(MostRecentTrks, maxThreshold, minThreshold)
%function [memshipValueOfTrk, thresholdMatrix] = memshipWSize(MostRecentTrks, maxThreshold, minThreshold)

%

% This function determines the membership of all MostRecentTrkservations as
% compared to each other MostRecentTrkservation.

% min & max threshold are not used in this function, but are passed to thresh.m
% Original code by LT T. Ruthenberg, USN

%

% by: Major Ian Glenn

%

% Written: 58Sep 95

% Modified: 23 Oct 95

%

% Input:

% MostRecentTrks - current Observations in the following form:
% Row 1 - lat [nm]

% Row 2 - lon {nm]

% Row 3 - course [nautical degrees]

% Row 4 - speed [knots]

% Row 5 - size [metres squared]

% Row 7 - Site & Track

% Row 8 - Time [sec]

% Row 9 - Lost Track

% Row 10 - Track Quality

%

% maxThreshold - determines max value of variable threshold function
% minThreshold - determines min value of variable threshold function
%

% Output:

% memshipValueOfTrk:

% thresholdMatrix:

%

% Design:

%

% This function determines which tracks are present and how many
% in a given set of tracks and plots the distribution

% and returns the matrix with the most recent observations%

%

% Calls:

% thresh.m

MostRecentTrks=MostRecentTrks’;% change orientation for algortihm
NMperDEG = 60;

NMperRAD = NMperDEG*180/pi;

[r,col] = size(MostRecentTrks);

% MEMBERSHIP FUNCTION ATTRIBUTES

speedl
sizel

1; % accuracy of full membership in speed
800; % accuracy of full membership in size i.e. +/- 400 m"2

it

memshipValueOfTrk=NaN .* ones(5*(col),col); % create a membership value matrix with NaN
% assigned to each position representing
% lat,lon,crse,speed,size

thresholdMatrix=zeros(col,col);
for p=1: col% p refers to the column of the reference track

refTrk =MostRecentTrks(:,p);
for n=1:col% Check every other track against the reference track

57

if p==n % do nothing if same track
else

% Get the threshold to apply for this comparison
threshold=thresh(refTrk, MostRecentTrks(:,n), maxThreshold, minThreshold);
thresholdMatrix(p,n)=threshold; % store for posterity

%% %o %o To%e o Vo %o %o To %o %o %o To % %o %e POSITION %% %o %o %% %o %% % %% %o
for m=1:2% X posn is the 1st row, Y posn is in the 2nd row
if abs((MostRecentTrks(m,n)-refTrk(m,1))) < 500/1852 % 500m coverted to NM

x=abs((MostRecentTrks(m,n)-refTrk(m,1))); % calculate the absolute distance
% between the two positions
memshipValueOf Trk(5*p-5+m,n) = abs(-x*1852/500 + 1);% Since it falls within the fusion
% parameters, calculate a
% Membership value
else
memshipValueOfTrk(5*p-5+m,n) = 0;% if outside limits set membership to zero
end

if memshipValueOfTrk(5*p-4,n) < threshold
break % if the membership value assigned does not

% exceed the threshold, STOP, do not even
% look at course, speed and size.

end
end
%% %0 %0 ToTo %o % Fe%e %% %% %%e COURSE %% %% %% Yo% %o % %o %
Z; course is in the third row and is in degrees

if memship ValueOfTrk(5*p-4:5*p-3,n)>threshold

if (MostRecentTrks(3,n)>320 & refTrk(3,1)<40)

x=360-MostRecentTrks(3,n)+refTrk(3,1);
memshipValueOf Trk(5*p-2,n) = -x/80 + 1;

elseif (MostRecentTrks(3,n)<40 & refTrk(3,1)>320)
x=360-refTrk(3,1)+MostRecentTrks(3,n);
memshipValueOf Ttk (5*p-2,n) = -x/80 + 1;

elseif abs(MostRecentTrks(3,n) - refTrk(3,1)) < 50
x=abs(MostRecentTrks(3,n)-refTrk(3,1));
if x > 180, x=360-x; end
memship ValueOf Trk(5*p-2,n) = -x/80 + 1;

else
memshipValueOfTrk(5*p-2,n) = 0;
end
else
memshipValueOfTrk(5*p-2,n) = NaN;
end

0% % %0 %% %% %% %% SPEED %% %% %% %% %% %% %% %% %

%
% speed is in the fourth row and is measured in knots

58

if memship ValueOf Trk(5*p-4:5*p-2,n)>threshold

if abs(MostRecentTrks(4,n) - refTrk(4,1)) <= speedl

memshipValueOfTrk(5*p-1,n) = 1; % if the ref speed falls within +/- 1 knot
% assign a membership value of 1

elseif abs(MostRecentTrks(4,n) - refTrk(4,1))> 1 ...
& abs(MostRecentTrks(4,n) - refTrk(4,1)) < 6

x=abs(MostRecentTrks(4,n)-refTrk(4,1));% It falls within the range
memshipValueOfTrk(5*p-1,n) = -x/5 + 6/5;% -6 to -1 or 1 to 6 knots
% assign appropriate value

else
memshipValueOfTtk(5*p-1,n) = 0;
end
else
memship ValueOfTtk(5*p-1,n) = NaN;% if below threshold, fail
end

%% %0 %o To %o To %o %o % T %o %o % %% %% SIZE %o%0%Pe%%
%
% size is in the fifth row and is measured in metres squared

if memship ValueOf Trk(5*p-4:5%*p-1,n)>threshold
% check to see all lat,lon,crse&speed passed

if abs(MostRecentTrks(35,n) - refTrk(5,1)) <= 4000
% if it is within +/- 4000 m~2
memship ValueOfTrk(5*p,n) = 1;
elseif abs(MostRecentTrks(5,n) - refTrk(5,1)) > 4000 ...
& abs(MostRecentTrks(5,n) - refTrk(5,1)) < 5000
% between +/- 4000 and +/- 5000 m*2
x=abs(MostRecentTrks(5,n)-refTrk(5,1));
memshipValueOfTrk(5*p,n) = -x/1000 + 5;
else

memshipValueOfTrk(5*p,n) = 0;
end

else

memshipValueOfTrk(5*p,n) = NaN; % if the other measures have failed
end

end % end if p==n

end % end for n=1:col

end % end for p=1:col

39

thresh.m

function mod_threshold = thresh(ref1, obsn, max_t, min_t)

% function mod_threshold = thresh(ref1, obsn, max_t, min_t)

% This function determines the threshold based on position of either the reference
% observation or the observation being compared to. This function is called by
% memship.m. A piecewise linear function is generated from max_t & min_t
% Original code by LT T. Ruthenberg, USN

%

% by: Major Ian Glenn

%

% Modified: 28 Oct 95

%

% INPUTS:

% Il refl - the reference observation

% 12 obsn - the observation being compared to the reference

% I3 max_t - the maximum threshold

% 14 min_t - the minimum threshold

%

% OUTPUTS:

% 01 mod_threshold - the threshold modified based on distance

% from the radar.

%

%%%%%%%%% Set Radar Locations %%% %% %% %% %%%%%

rdrlx = -01- 05.53583/60; %displacement of radar 1 in lat & lon
rdrly = 41+18.59502/60; % Governors Island

rdr2x = -05 - 25.33414/60; %displacement of radar 2 Bank Street
rdr2y = 38+48.5168/60 ;

rad_loc={ rdrlx, rdr2x;...
rdrly, 1dr2y];

NMperDEG = 60;
NMperRAD = NMperDEG*180/pi;

% site or radar producing the track is contained in the sixth row

refRdrXPosn = rad_loc(1,floor(ref1(6)/1000)); % select the radar that produced the track
refRdrYPosn = rad_loc(2,floor(ref1(6)/1000));

refXPosn = ref1(1) ;

refYPosn =ref1(2);

% Distance from the observing radar to the referenced observation in NM
dist_ref=sqrt(((refRdrXPosn-refXPosn))*2 + ((refRdrYPosn-refY Posn))*2);

obsnRdrXPosn = rad_loc(1,floor(obsn(6)/1000)); % select the radar that produced the track
obsnRdrYPosn = rad_loc(2,floor(obsn(6)/1000));

obsnXPosn = obsn(1) ;

obsnYPosn = obsn(2);

% Distance from the observing radar to the observation being compared
dist_obs=sqrt(((obsnRdrXPosn-obsnXPosn))*2 + ((obsnRdrYPosn-obsnYPosn))*2);

if dist_ref<=1 & dist_obs<=1
mod_threshold=min_t;
elseif (dist_ref > 1 | dist_obs > 1) & (dist_ref < 5 & dist_obs < 5)
mod_threshold=((max_t-min_t)/4)*min([dist_ref dist_obs]) + min_t-((max_t-min_t)/4);
else
mod_threshold=max_t;
end

if mod_threshold < min_t

mod_threshold=min_t;
end

60

associationMatrix.m

function assocMatrix = associationMatrix(memship ValueOfTrk, thresholdMatrix)

% function assocMatrix = associationMatrix(memship ValueOfTrk, thresholdMatrix)

% This function generates the association matrix based on the current

% membership values and the minimum threshold provided by thresholdMatrix

% Original code by LT T. Ruthenberg, USN

%

% by: Major Ian Glenn

%

% Modified: 23 Oct 95

%

% INPUTS:

% I1 memshipValueOfTrk - membership values of current observations
% 12 thresholdMatrix - minimum allowable threshold for observations
%

% OUTPUTS:

% 01 assocMatrix - association matrix

%

[r,col]=size(memship ValueOfTrk);
assocMatrix=zeros(col,col);

nn=0;
for p=1:5:r-4
nn=nn+1;
for n=nn:col
% disp(‘assocMatrix values’)
threshold=thresholdMatrix(n,ceil(p/5));
if memship ValueOfTrk(p:p+4,n) > threshold
assocMatrix(ceil(p/5),n)=1;
end
end
end

61

relateTracks.m

function [updateTrks,fusedTrks,notFuschrks]:relateTracks(MostRecentTrks,assocMatrix)

% This function creates carries out the actual association of tracks

%

% Written by: Major Ian Glenn

%

% Created: 13 Oct 95

% Modified: 19 Oct 95

%

% Input:

% I1 mostRecentTrks - these are the tracks to associate or not
% 12 assocMatrix - dictates which tracks should be associated
%

%

% Output:

% 01 relatedTracks - final matrix of tracks to update with Tdbm
% as unique platform tracks

% 02 fusedTrks - use this to plot fused tracks

%

% Design:

% Use assocMatrix to index which tracks to fuse

%

%

assocMatrix=assocMatrix-diag(diag(assocMatrix)); % this step subtracts out the main
% diagonal elements (relating self to self)

[row,colm]=find(assocMatrix);% find the element locations where relation appears
% the rows give the first track to associate
% and the colms the second track

%if length(row)>0
% disp(sprintf(‘ Fuse tracks %4d and %4d \n’, MostRecentTrks(row,6),MostRecentTrks(colm,6)));
%end

sitesAndTrks = MostRecentTrks(row,6)*10000+MostRecentTrks(colm,6);
% Now comes the time to fuse the tracks using the centroid weighted by track quality

fusedLat = ((MostRecentTrks(row,1) .*MostRecentTrks(row,9)./9) ...
+(MostRecentTrks(colm,1) .*MostRecentTrks(colm,9)./9))./2 ;

fusedLon = ((MostRecentTrks(row,2) .*MostRecentTrks(row,9)./9) ...
+(MostRecentTrks(colm,2) .*MostRecentTrks(colm,9)./9))./2 ;

fusedCrse = (MostRecentTrks(row,3) .*MostRecentTrks(row,9)./9) ...
+(MostRecentTrks(colm,3) .*MostRecentTrks(colm,9)./ 9))./2 ;

fusedSpeed = ((MostRecentTrks(row,4) .*MostRecentTrks(row,9)./9) ...
+(MostRecentTrks(colm,4) .*MostRecentTrks(colm,9)./ 9))./ 2 ;

fusedSize = (MostRecentTrks(row,5) .*MostRecentTrks(row,9)./9) ...
+(MostRecentTrks(colm,5) .*MostRecentTrks(colm,9)./9))./2 ;

fusedTime = max([MostRecentTrks(row,7),MostRecentTrks(colm,7)]’)’;
fusedLT = MostRecentTrks(row,8)+MostRecentTrks(colm,8);
fusedTQ = MostRecentTrks(row,9)* 1 0+MostRecentTrks(colm,9);

fusedTrks = [fusedLat,fusedLon,fusedCrse,fusedSpeed,fusedSize, sitesAndTrks, ..
fusedTime,fusedLT,fusedTQ]J;

62

% now append the tracks that are not to be fused
mask=ones(size(assocMatrix))-assocMatrix;
rowTotal=sum(mask);

colmTotal=sum(mask’);

notFusedTrksIndx= find(rowTotal==colmTotal);
notFusedTrks = MostRecentTrks(notFused TrksIndx,:);

%disp(‘Not Fused Tracks’)
%printPretty(MostRecentTrks(notFusedTrksIndx,:))
updateTrks = [fusedTrks;notFusedTrks];

%disp(‘Tracks to Update Tdbm’)
%printPretty(updateTrks)

63

TdbmlInterface.m

function [Tdbm,nextPlatformNo]=Tdbmlnterface(Tdbm,updateTrks,nexLPlatformNo)

%o This function simulates the interface to the Tdbm.
%
% Written by: Major lan Glenn
%
% Created: 19 Oct 95
% Modified: 20 Oct 95
%
% Input:
% It - Tdbm The Track database
% 12 - updateTrks
% I3 - PlatformNo A unique platform number
%
% Output:
% 01 - Tdbm
% 02 - PlatformNo this is the global unique track no.
%
%
% Design:
% For each track in updateTrks
%o Search the Tdbm for a matching site&track number
% if match
% copy PlatformNo to track
%
% if no match
% create a new PlatformNo
% append to track
% update PlatformNo counter
% Append new tracks with their PlatformNos assigned to Tdbm
%
% Initialize structure
if exist(“Tdbm’) ~= 1 % if this is the first time the Tdbm is called
initPlatformNo = (1:size(updateTrks,1))’;
Tdbm = [updateTrks,initPlatformNo};
nextPlatformNo = size(updateTrks,1) +1;
return
end

% Get the site&tracks stored in the Tdbm
TdbmSiteNtrks = {floor(Tdbm(:,6)/10000), Tdbm(:,6)-floor(Tdbm(:,6)/10000)*1 0000];

% now check them against the sites&tracks in the new info

for rowUpdatedTrk=1:size(updateTrks,1)% look at every row in updateTrks matrix

%

% extract the site&track numbers in a vector like [1001 2001]
UpdateTrkSiteNtrk =[floor(updateTrks(rowUpdatedTrk,6)/10000),...
updateTrks(rowUpdatedTrk,6)-floor(update Trks(rowUpdat-
edTrk,6)/10000)*10000];

noSiteNTrksPresent=length(find(Update TrkSiteNtrk));
if noSiteNTrksPresent ==1% when only one site&track is present

[rowPlatformNo, notUsed] =find(TdbmSiteNtrks == UpdateTikSiteNtrk(2));% Get the site&track
number

if length(rowPlatformNo) ==0 % if no match is found

PlatformNo(rowUpdatedTrk) = nextPlatformNo;% assign the next available Platform
number »

64

% to the vector of Platform numbers
nextPlatformNo = nextPlatformNo +1;% increment the Platform number

else % if a match is found
sameTrackRow = max(rowPlatformNo); % grab the latest matching track in
PlatformNi o(rowUp;?gcllI'lI‘rk) = Tdbm(sameTrackRow,10) ; % and grab out the Platform
end No
elseif noSiteNTrksPresent ==2 % when two site&tracks are present

[rowPlatformNo, notUsed] =find(TdbmSiteNtrks == UpdateTrkSiteNtrk(1));% Get the 1st
site&track number

if length(rowPlatformNo) =0 % if no match is found on first site&track,
% check
second site&track
[rowPlatformNo, notUsed] =find(TdbmSiteNtrks == UpdateTrkSiteNtrk(2));

% Get the site&track number for 2nd site&track

if length(rowPlatformNo) ==0 % if no match is found on second site&track

PlatformNo(rowUpdatedTrk) = nextPlatformNo;% assign the next available
Platform number

% to the vector of Platform numbers
nextPlatformNo = nextPlatformNo +1;% increment the Platform number

else % if a match is
found on 2nd site&track

sameTrackRow = max(rowPlatformNo); % grab the latest matching
track in Tdbm

PlatformNo(rowUpdatedTrk) = Tdbm(sameTrackRow,10) ; % and grab out the
Platform No

end

else % if a match is found on the first site&track
sameTrackRow = max(rowPlatformNo);% grab the latest matching track in Tdbm
PlatformN; o(rowUpcﬁgedTrk) = Tdbm(sameTrackRow,10) ; % and grab out the Platform
end
end
end % end for loop to check each row of updateTrks
PlatformNo = PlatformNo’;
% Append the new tracks to the Tdbm

Tdbm = [Tdbm ; updateTrks , PlatformNo];
return

65

randomSize.m

%function ObsnMatrixRandSize = randomSize()

%

% Written by: Major Ian Glenn

%

% Created: 25 Oct 95

% Modified: 25 Oct 95

%

% Input:

% Il -Simulation data

%

% Output:

% 01 - ObsnMatrixRandSize with size randomized as follows:
% 02 - size - 1 std dev to + 2 std dev

% mean Std Deviation Min Max
% Ship A 800 200 600 1200
% Ship B 1200 500 700 2200
% Ship C 1600 600 1000 2800
% Ship D 3200 1200 2000 5600
%

% Design:

% load the simulation data and randomize the size value

%

if exist(‘TrackTableRdr1’) == 0
load TrackTableGla.mat;
end

if exist(‘TrackTableRdr2’) == 0
load TrackTableBanka.mat;

end

if exist(“TrackTableRdr1b’) == 0

load TrackTableGIb.mat;
end
if exist(“TrackTableRdr2b’) ==

load TrackTableBankb.mat;
end

ObsnMatrixRandSize = [TrackTableRdr1 ;TrackTableRdr2; TrackTableRdr1b;TrackTableRdr2b];

x = sort(ObsnMatrixRandSize(:,5));

difference=diff([x;NaN]);
sizesPresent = x(difference~=0)
% Ship A 800 200 600 1200

resultFind800 = find(ObsnMatrixRandSize(:,5) == 800);

tempA = randn(length(resultFind800),1)*200 + 800;

lowSide = 600

highSide = 1200

% Limit to one std dev below

texr{pA(ﬁnd(tempA < lowSide)) = ones(length(find(tempA < lowSide)),1).*lowSide;
% Limit to two std dev above

tempA(find(tempA > highSide)) = ones(length(find(tempA >highSide)),1).*highSide;

figure(1)
subplot(221);hist(tempA)

66

title(“Ship A”)
xlabel(‘meters’)
ylabel(‘count’)

% ShipB 1200 500 700 2200

resultFind1200 = find(ObsnMatrixRandSize(:,5) == 1200);

tempB = randn(length(resultFind1200),1)*500 + 1200;

lowSide = 700

highSide = 2200

tempB(find(tempB < lowSide)) = ones(length(find(tempB < lowSide)),1).*lowSide;

% Limit to two std dev above

tempB(find(tempB > highSide)) = ones(length(find(tempB >highSide)),1).*highSide;
subplot(222);hist(tempB)

title(‘Ship B’)

xlabel(‘meters’)

ylabel(‘count’)

% ShipC 1600 600 1000 2800

resultFind1600 = find(ObsnMatrixRandSize(:,5) == 1600);

tempC = randn(length(resultFind1600),1)*600 + 1600;

lowSide = 1000

highSide = 2800

tempC(find(tempC < lowSide)) = ones(length(find(tempC < lowSide)),1).*lowSide;

% Limit to two std dev above

tempC(find(tempC > highSide)) = ones(length(find(tempC > highSide)),1).*highSide;
subplot(223);hist(tempC)

title(‘Ship C’)

xlabel(‘meters’)

ylabel(‘count’)

% Ship D 3200 1200 2000 5600
resultFind3200 = find(ObsnMatrixRandSize(:,5) == 3200);

tempD = randn(length(resultFind3200),1)*1200 + 3200;

lowSide = 2000

highSide = 5600

tempD(find(tempD < lowSide)) = ones(length(find(tempD < lowSide)),1).*lowSide;
% Limit to two std dev above

tempD(find(tempD > highSide)) = ones(length(find(tempD >highSide)),1).*highSide;
subplot(224);hist(tempD)

title(‘Ship D’)

xlabel(‘meters’)

ylabel(‘count’)

ObsnMatrixRandSize(resultFind800,5)= tempA;
ObsnMatrixRandSize(resultFind1200,5)= tempB;
ObsnMatrixRandSize(resultFind1600,5)= tempC;

ObsnMatrixRandSize(resultFind3200,5)= tempD;

67

print figRandSizeDistrs

figure(2)
hist(ObsnMatrixRandSize(:,5))
title(‘Overall Size Distribution’)
xlabel(‘meters’)

ylabel(‘count’)

print figOveraliSizeDistr

68

showChartl.m

%function [J=showChart1()

% function

%

% This function creates the underlying harbor chart graphics used for plotting results
%

% Written by: Major Ian Glenn
%
% Created: 14 Oct 95
% Modified: 15 Oct 95
%

if exist(‘Y’) ==0
[X,map]=gifread(“NYHbr.gif") ;

Y= flipud(X);
end
cif

chartHandle= image(Y) ;
colormap(map)
axis(‘xy’)
Joaxis(‘image’)
axis(‘square’)

% change aspect ratio of chart so that lat and lon are equal
% current is 1.37 width to 1.8 height
% therefore multiply width of 818 pixels by 1.8/1.37

set(chartHandle, XData’,[1 818*1.8/1.37]) % now onw unit equals one unit in each dim
axis([50 , 1000, 250, 950])

% set(chartHandle, Visible’, off”)

% set(chartHandle,’ Visible’,’on’)

fig=gcf ; % Get current figure handle.
imageHandle = get(fig,’Children’);

set(imageHandle,’ XColor’,’b’)
set(imageHandle,’ YColor’,’b’)

set(imageHandle,’GridLineStyle’,’-")
set(imageHandle,’ XGrid’, on’)

set(imageHandle, YGrid’, on’)
set(imageHandle, XTick’,[130, 825])
set(imageHandle,' YTick’,[635, 810])
set(imageHandle,’ X TickLabels’,[‘74,05W’;’74,01W’])
set(imageHandle,’ YTickLabels’,[‘40,40N’;’40,41N’])

%imzoom
hold on

plotHandle= axes(‘position’,[0.13, 0.11, 0.775, 0.815]) ; %[left, bottom, width, height]
%oset(H, Color’,’none’)

set(plotHandle,’XColor’,’g")

set(plotHandle, YColor’,’g’)

set(plotHandle,'Box’,’on’)

axis(‘square’)

grid

axis([-5.46 -0 37.8 41.8))

set(plotHandle,’GridLineStyle’, -.")
set(plotHandle,’XGrid’, on’)
set(plotHandle,’ YGrid’, on’)
set(plotHandle, XTick’,[-1, -2,-3,-4,-5])
set(plotHandle,’YTick’,[38, 39,40,417)

69

set(plotHandle,” X TickLabels’,[‘0O1W’;"02W’;’03W’;"04W*;"05W’])
set(plotHandle, YTickLabels’,[38N’;"39N’;*40N";’41N’])
set(plotHandle,’NextPlot’,’add’)

90% %0 % o %6 % %o To To Fo %o % % To %o %o % %o %o To %o %o %o % % %o % % %o %6 % % %6 %6 % % %% % % % %%
set(chartHandle,’ Visible’, on’)

set(imageHandle, Visible', off”)

set(plotHandle,’ Visible’, on’)

% get(plotHandle)

Gllat=-01 - 05.53583/60;
Gllon=41+18.59502/60 ;
plot(GIlat,Gllon, b*’)
rdr1x=Gllat;
rdrly=Gllon;

Banklat=-05 - 25.33414/60;
Banklon=38+48.5168/60 ;
plot(Banklat,Banklon,’r*’)
rdr2x=Banklat;
rdr2y=Banklon;

h3=line({Gllat Gllat],[GIlon-.15,GIlon+.15]);
set(h3, Linestyle’, -’
set(h3,’color’,’b’)

set(0,’ DefaultTextColor’,’blue’) %This makes the radar sight print in blue
set(0, DefaultTextFontSize’,14)

text(rdr1x+.1,rdrly-.3, ‘Radar 1: *)
text(rdrlx+.1,rdrly-.5, ‘Governor™s *)
text(rdrix+.1,rdrly-.7, ‘Island)

hd=line([rdr1x-.15 rdrlx+.15],[rdrly,rdrly}));
set(h4,’Linestyle’,’-’)
set(h4,’ color’,’'b’)

h5=line([rdr2x rdr2x],[rdr2y-.15,rdr2y+.15]);
set(h5,’ Linestyle’,-")
set(hS,’ color’,’r’)
set(0,’DefaultTextColor’,’red’) %This makes the radar sight print in blue
text(rdr2x+.05,rdr2y-.3, Radar 2:°)
text(rdr2x+.05,rdr2y-.5, Bank St’)

hé=line({rdr2x-.15 rdr2x+.15],[rdr2y,rdr2y]);
set(h6,’ Linestyle’,’-")
set(h6,’ color’,’r")

set(0, DefaultTextFontSize’,9)
set(0, DefaultTextColor’, white’)
%0% %% %o 6% % %o %o %o Fo To%6 %o o % %o To % %o %o %o % %o o % %o % %6 % % %6 % %o % %o % % % % % %

trk1Handle= axes(‘position’,[0.13, 0.11, 0.775, 0.815]) ; %[left, bottom, width, height]
%set(H, Color’,’none’)

set(trk1Handle,’XColor’,’ m’)

set(trk1Handle, YColor’, m’)

set(trk1Handle,’Box’, on’)

axis(‘square”)

gn
axis([-5.46 -0 37.8 41.8))

set(trk1Handle,’GridLineStyle’, -
set(trk1Handle, XGrid’,’on’)
set(trk1Handle,’YGrid’,’on’)
set(ttk1Handle, XTick’,[-1, -2,-3,-4,-5])
set(trk1Handle,"YTick’,[38, 39,40,41])

70

set(trk1Handle, XTickLabels’,[‘01 W’;’02W’;’03W’;’04W’;’05W'])
set(trk1Handle,” Y TickLabels’,{ 38N’;’39N";’40N’;’41N’])
set(trk1Handle, NextPlot’,’add’)

% set(trk1Handle, FontSize’,12)

set(trk1Handle, Visible’, off”)

o0 To %o % o %o Te To Fo %o To To ToTo Fo %o T o Fo To %o %o %o o %o Fo o %o %o %o %o %o o To To %o %o % %o %o %o Yo

% Create the box to show coverage areas
xf1=[-4,-0,-0,-4];
yf1=[41.8,41.8,39,39];

gf1=Aill(xf1,yf1,’c’);
set(gfl,’EdgeColor’,’c’);
set(gf1,'LineWidth’,3)
set(gf1,’FaceColor’,'none’)
Jeset(gl, Visible’, off”)

% Create the box to show coverage areas
xf2=[-5.46,-02,-02,-5.46];
yf2=[40.5,40.5,37.8,37.8];

egf2=Aill(xf2,yf2,’m’);
set(gf2,’EdgeColor’,’m’);
set(gf2,’LineWidth’,3)
set(gf2,’FaceColor’,'none’)
Yoset(g2,’ Visible’,’ off”)

Yo% %0 %0 %e Yo To %o To %o %o %o ToTe To T ToTo %o To To % %o %o %o T To %o To o %o %o %o Fo %o %o %o %o %o % % %o %o
% use cla to clear a track from the axis

71

inputPlots.m

function inputPlots(TrackTableRdr1,TrackTableRdr2, TrackTableRdr1b,...
TrackTableRdr2b, ObsnMatrix)

%
% Written by: Major Ian Glenn
%
% Created: 20 Oct 95
% Modified: 22 Nov 95
%
% Input: Track data from FusionAlgorithm.m
% Il - TrackTableRdr1
% 2 - TrackTableRdr2
% I3 - TrackTableRdr1b
% I4 - TrackTableRdr2b
% IS - ObsnMatrix
%
% Output:
% Plots of input data
%
% Design:
% plot routines to show inputs to the algorithm
%
% Calls:
% showChartl.m
% showChart3.m
%
%% Fo% %o %o %0 %o o Yo To To To %o To T o Fo Fo %o o To %o To Fo To o To % o To %o %o %o % To Jo To %o Yo
% 2k 3k 3k afe ok o 3 sk sk fe sk s sk o sk sfe ke 3k ok 3k sk ke ok e ke sk ok ok o ok Plot Fcns ke ok sk o ok ok e e ok 2k sk s o ke ke sk oke ok sk sk ok
figure(1); % track 1001
clg
showChart1

set(0,' DefaultTextFontName’,’times-bold’)

set(0,' DefaultTextFontSize’,18)

plot(TrackTableRdr1(:,1),TrackTableRdr1(:,2), bo’)

set(0,' DefaultTextColor’, ‘b’)

text(TrackTableRdr1(100,1)+.1,TrackTableRdr1(100,2),...
num2str(TrackTableRdr1(1,6)))

print -dpsc figtrk1001
print -dgif8 figtrk1001

figure(2); % track 2001 & 2002
clg
showChart1

set(0," DefaultTextFontName’,’times-bold’)

set(0, DefaultTextFontSize’,18)

plot(TrackTableRdr2(:,1),TrackTableRdr2(:,2),’r+’)

set(0,’ DefaultTextColor’, ‘r’)

text(TrackTableRdr2(30,1)+.1,TrackTableRdr2(30,2), num2str(Track TableRdr2(30,6)))
text(TrackTableRdr2(530,1)+.1,TrackTableRdr2(530,2), num2str(Track TableRdr2(500,6)))

figure(3); % 1003 & 1004
clg
showChart1

set(0,' DefaultTextFontName’, times-bold’)

set(0,' DefaultTextFontSize’,18)

plot(TrackTableRdr1b(:,1), TrackTableRdr1b(:,2), bo’)

set(0,' DefaultTextColor’, ‘b’)

text(TrackTableRdr1b(30,1)+.1,Track TableRdr1b(30,2), num2str(Track TableRdr1b(30,6)))
text(Track TableRdr1b(750,1)+.1,TrackTableRdr1b(750,2), num2str(TrackTableRdr1b(750,6)))

72

ﬁlgure(4); % 2003 & 2004

clg

showChart1

set(0,' DefaultTextFontName’,'times-bold’)

set(0,' DefaultTextFontSize’,18)

plot(TrackTableRdr2b(:,1),TrackTableRdr2b(:,2), r+’)

set(0,”DefaultTextColor’, ‘r’)

text(TrackTableRdr2b(10,1)+.1,TrackTableRdr2b(10,2), num2str(TrackTableRdr2b(10,6)))
text(TrackTableRdr2b(750,1)+.1,TrackTableRdr2b(750,2), num2str(Track TableRdr2b(750,6)))

figure(5); % combined plot
clg
showChart1
plot(ObsnMatrix(find(ObsnMatrix(:,6)==1001),1),ObsnMatrix(find(ObsnMa-
trix(;,6)==1001),2),’r*")
plot(ObsnMatrix(find(ObsnMatrix(:,6)==1002),1),ObsnMatrix(find(ObsnMa-
trix(:,6)==1002),2),**)
plot(ObsnMatrix(find(ObsnMatrix(:,6)==1003),1),0bsnMatrix(find(ObsnMa-
trix(:,6)==1003),2),’r**)
plot(ObsnMatrix(find(ObsnMatrix(;,6)==1004),1),0bsnMatrix(find(ObsnMa-
trix(:,6)==1004),2),’r*")
plot(ObsnMatrix(find(ObsnMatrix(:,6)==2001),1),ObsnMatrix(find(ObsnMa-
trix(:,6)==2001),2),’b+’)%
plot(ObsnMatrix(find(ObsnMatrix(:,6)==2002),1),0bsnMatrix(find(ObsnMa-
trix(:,6)==2002),2),'b+’)%
plot(ObsnMatrix(find(ObsnMatrix(:,6)==2003),1),0ObsnMatrix(find(ObsnMa-
trix(:,6)==2003),2),'b+")
plot(ObsnMatrix(find(ObsnMatrix(:,6)==2004),1),0ObsnMatrix(find(ObsnMa-
trix(:,6)==2004),2),'b+")

print -dpsc figInputTrks
print -dgif8 figInputTrks

73

animationPlots.m

function animationPlots(updateTrks,fusedTrks,notFusedTrks)

%

% Written by: Major Ian Glenn

%

% Created: 20 Oct 95

% Modified: 22 Nov 95

%%

% Input: Track data from FusionAlgorithm.m
%o Il - updateTrks
% I2 - fusedTrks

% I3 - notFusedTrks
%

% Output:

%

%

% Design:

% plot routines to show progress of the algorithm
%

% Calls:

% showChartl.m

%

%

%% %0 %o % %o %o % o To To To %o e To %o %o % %o %o %o %o %o %o o To %o % %6 % %o % % %% %o % %% %
% k¥ L2 LS 33 PlOt FCnS 2k 5K 3% 3 e 3¢ 3 S ok 3k ke o ok e ok o ook ok ke ok
figure(6)
% Put on the site and track numbers every 50th iteration.
if floor(updateTrks(1,7)/50) ~= floor(((updateTrks(1,7)-1)/50))
showChart1
set(0,” DefaultTextColor’, ‘b’)
set(0," DefaultTextFontName’,’times-bold’)
set(0, DefaultTextFontSize’,18)

for g= 1:size(updateTrks,1)
text(updateTrks(g,1)+.1,updateTrks(g,2), sprintf(‘%d’ .updateTrks(g,6)))

end

set(0, DefaultTextFontSize’,9)
end % end floor
% Plot every fifth point.

if floor(updateTrks(1,7)/5) ~= floor(((updateTrks(1,7)-1)/5))
% print ever 5 pts or 15 seconds (3 second updates)
if length(notFusedTrks) >0
plot(notFusedTrks(:,1),notFusedTrks(:,2),’b*’)
plot(notFusedTrks(:,1),notFusedTrks(:,2),’b.")

end

if length(fusedTrks) >0
plot(fusedTrks(:,1),fusedTrks(:,2),ro’)
plot(fusedTrks(:,1),fusedTrks(:,2),r.”)

end

set(0, DefaultTextColor’, ‘b’)

% Create the box to show time
xf1=[-1.9,-0.1,-0.1,-1.9];
yf1=[38,38,38.4,38.4];

gf1=fill(xf1,yf1,’d’);

set(gf1,’EdgeColor’,’b’);

set(gfl,’ LineWidth’,3)

set(gf1,’FaceColor’,’y’)

set(0, DefaultTextFontName’, times-bold”)

set(0,” DefaultTextFontSize’,12)

handlel = text(-1.8,38.2, [‘Time: *, num2str(updateTrks(1,7)),’ sec’]);

74

% Print out some interesting time epochs
if updateTrks(1,7) = 165

print -dpsc figTimel65

print -dgif8 figTime165
end

if updateTrks(1,7) == 585
print -dpsc figTime585
print -dgif8 figTime585
end

if updateTrks(1,7) == 870
print -dpsc figTime870
print -dgif8 figTime870
end

if updateTrks(1,7) == 975
print -dpsc figTime975
print -dgif8 figTime975
end

if updateTrks(1,7) == 1125
print -dpsc figTime1125
print -dgif8 figTime1125
end

if updateTrks(1,7) == 1335
print -dpsc figTime1335
print -dgif8 figTime1335
end

set(0,’ DefaultTextFontSize’,9)
end % end plot every 10 pts

set(0, DefaultTextColor’, ‘default’)

75

outputPlots.m

function outputPlots(plotNotFusedTrks,plotFusedTrks, Tdbm)

%

%

% Written by: Major Ian Glenn

%

%0 Created: 20 Oct 95

% Modified: 22 Nov 95

%

% Input: Track data from FusionAlgorithm.m
%o Il - plotNotFusedTrks
% 12 - plotFusedTrks
% I3 - Tdbm

%

% Output:

% O1 - figOutputPlatforms.ps
%

% Design:

% plot routines

%

% Calls:

% showChartl.m

% showChart2.m

%o

Fo%0 %% % %o %% %o %o %o o To o %o % %o % %o %o %o %6 %6 % %o %o %o % % % % % %6 %6 % % % %% %
figure(7) % plot of fused and not fused tracks
clg
showChartl

plot(plotNotFusedTrks(:,1),plotNotFusedTrks(5,2),¢c+’)
plot(plotNotFusedTrks(:,1),plotNotFusedTrks(:,2),’b.)

plot(plotFusedTrks(:,1),plotFused Trks(:,2),’ mo’)
plot(plotFusedTrks(:,1),plotFusedTrks(:,2),’k.’)

T0%0 %% % %o %% %o %o %o %o To o %o %6 % %6 T T %o %o %o T % %o %o %o % % % %6 %o %69 % % %o % %
figure(8) % zoomed view of fused and not fused tracks
clg
showChart2

plot(plotNotFusedTrks(:,1),plotN otFusedTrks(:,2), c+’)
plot(plotNotFusedTrks(:,1),plotNotFusedTrks(:,2),’b.’)

plot(plotFusedTrks(:,1),plotFusedTrks(:,2),’ mo’)
plot(plotFusedTrks(:,1),plotFusedTrks(:,2),’k.’)

%0%0%0 % %% %% %% % %o % %o %o %0 %o % %o %o %o o %o %o %6 %o %6 % %o % % %o %o % % % % % % %
figure(9) % plot of resultant platform tracks in Tdbm
clg
showChart1

set(0,' DefaultTextFontSize’,12)

plot(Tdbm(find(Tdbm(:,10)==1),1), Tdbm(find(T dbm(:,10)==1),2),’b+")
set(0, DefaultTextColor’, ‘b)

platform1= [Tdbm(find(Tdbm(:,10)==1),1), Tdbm(find(Tdbm(:,10)=1),2)];
text(platform1(30,1)+.2,platform1(30,2), ‘Platform 1)

plot(Tdbm(find(Tdbm(:,10)==2), 1), Tdbm(find(Tdbm(:,10)==2),2),’r0")
set(0,’ DefaultTextColor’, ‘1)

platform2= [Tdbm(find(Tdbm(:,1 0)==2),1),Tdbm(find(Tdbm(:,1 0)==2),2)];
text(platform2(30,1)+.2,platform2(30,2), ‘Platform 2’)

76

plot(Tdbm(find(Tdbm(:,10)==3),1),Tdbm(find(Tdbm(:,10)==3),2),’ g**)
set(0,' DefaultTextColor’, ‘g’)

platform3= [Tdbm(find(Tdbm(:,10)==3),1),Tdbm(find(Tdbm(:,10)==3),2)];
text(platform3(220,1)+.1,platform3(220,2), ‘Platform 3’)

plot(Tdbm(find(Tdbm(:,10)==4),1),Tdbm(find(Tdbm(:,10)==4),2), mx’}
set(0,’ DefaultTextColor’, ‘m’)

platform4= [Tdbm(find(Tdbm(:,10)==4),1),Tdbm(find(Tdbm(:,10)==4),2)];
text(platform4(270,1)+.1,platform4(270,2), ‘Platform 4’)

print -dpsc figOutputPlatforms
print -dgif8 figOutputPlatforms

77

plotMembership.m

%function [memshipValueOfTrk, thresholdMatrix] = plotMembership(MostRecentTrks, maxThreshold, minThreshold)
%
%

% This function ot the memebership functions used in the algorithm
%

%

% Written by: Major Ian Glenn

%

% Created: 28 Oct 95

% Modified: 23 Oct 95

%

% MEMBERSHIP FUNCTION ATTRIBUTES

speedl = 1; % accuracy of full membership in speed
sizel = 800, % accuracy of full membership in size i.e. +/- 400 m”2
if1

%% % %e %o % %o %0 %o %o %o %o %% POSITION %% %% %% %% %% %6 % %% % %% %% %% %% % %6 %o % % %
xValue = linspace(-.7,.7,200) ; % -.7 to .7 NM
yValue = zeros(size(xValue));
for ctr=1: length(x Value)
if abs(xValue(ctr)) < 500/1852 % 500m coverted to NM

yValue(ctr) = abs(-abs(xValue(ctr))*1852/500 + 1);

else
yValue(ctr) = 0;% if outside limits set membership to zero
end
end
subplot(221)

plot(xValue*1852,yValue,’b’)
axis([-1000 1000 0 1.2])
xlabel(‘meters’);ylabel(‘membership’)
title(‘Lat and Lon’)

%% %% %% Te%e %% %% COURSE %%% %% %% %o% %o %o %% %% %% %% % %5
%
%
_refTrkCrse = 90
MostRecentTrksCrse = linspace(0,360,200) ; % perform relative degree check
xValue = linspace(-30,30) ; % -30 to 30 degrees
yValue = zeros(size(xValue)),

course is in the third row and is in degrees

for ctr=1: length(MostRecentTrksCrse)

if (MostRecentTrksCrse(ctr)>320 & refTrkCrse<40)
% disp(“>320 & <40’)
x=360-MostRecentTrksCrse(ctr)+refTrkCrse
yValue(ctr) = -x/80 + 1;
elseif (MostRecentTrksCrse(ctr)<40 & refTrkCrse>320)
% disp(‘<40 & >320")
x=360-refTrkCrse+MostRecentTrksCrse(ctr)
yValue(ctr) = -x/80 + 1;

elseif abs(MostRecentTrksCrse(ctr) - refTrkCrse) < 50
% disp(‘diff<50’)

x=abs(MostRecentTrksCrse(ctr)-refTrkCrse);

78

if x > 180, x=360-x; end
% disp(‘x > 180, x=360-x")

yValue(ctr) = -x/80 + 1;

else
yValue(ctr) = 0;
end

end
subplot(222)
plot(MostRecentTrksCrse-refTrkCrse,yValue,’b’)
axis([-90 90 0 1.2])
xlabel(‘degrees’);ylabel(‘membership’)
title(‘Crse’)

%% %0 %o %% %o % %o %o %o % % % %% SPEED %% %o %% %o %0 %e %o %o %o %e %o %% %o
%
% speed is in the fourth row and is measured in knots

relativeSpeed = linspace(-8,8,200) ; % perform relative SPEED check

memshipValueOfTrk = zeros(size(relativeSpeed));

for ctr=1: length(relativeSpeed)

if abs(relativeSpeed(ctr)) <= speedl

memshipValueOfTrk(ctr) =1 ;
% if the ref speed falls within +/- 1 knot
% assign a membership value of 1

elseif abs(relativeSpeed(ctr)) > 1 & abs(relativeSpeed(ctr)) < 6

x=abs(relativeSpeed(ctr)); % It falls within the range

memshipValueOfTrk(ctr) = -x/5 + 6/5;
% -6 to -1 or 1 to 6 knots
% assign appropriate value

else
memship ValueOfTrk(ctr) = 0;
end

end % end ctr

subplot(223)
plot(relativeSpeed, memship ValueOfTrk,'b")
axis([-8 8 0 1.2])
xlabel(‘knots’);ylabel(‘membership’)

title(“Speed’)
end % if 0
%% %% %o %e % o %o %o %o % % %o % %o %o % SIZE T0% %% %%
%
% size is in the fifth row and is measured in metres squared

relativeSize = linspace(-5000,5000,200) ; % perform relative SPEED check
memshipValueOfTrk = zeros(size(relativeSize));

for ctr=1: length(relativeSize)

if abs(relativeSize(ctr)) <= 2000
% if it is within +/- 2000 m"2

79

memshipValueOfTrk(ctr) = 1;

elseif abs(relativeSize(ctr)) > 2000 ...

& abs(relativeSize(ctr)) < 3000

x=abs(relativeSize(ctr));
memshipValueOfTrk(ctr) = -x/1000 + 3;
else

memship ValueOfTrk(ctr) = 0;
end

end % end ctr

subplot(224)
plot(relativeSize,memshipValueOf Tk, b’)
axis([-5000 5000 0 1.2))
xlabel(‘square meters’);ylabel(‘membership’)
title(‘Size’)

% between +/- 2000 and +/- 3000 m*2

80

APPENDIX B. SIMULATION CODE

This appendix contains the code used to perform the Kalman filtering of the simu-

lated tracks. KalmanTrackerCD was used to filter the data sets for ships C and D, the iden-

tical KalmanTrackerAB (not listed) was used to filter ships A and B. The outputs were

used to construct a simulated database of link tracks for the algorithm in Appendix A to

process. The following code is contained in this appendix:

KalmanTrackerCD.m on page 82.
PseudoMeasure.m on page 93.
KalmanPredict.m on page 95.
KalmanUpdate.m on page 96.
Init_PosnVel on page 97.

81

KalmanTrackerCD.m

% KalmanTrackerCD.m

%

% MULTI-SENSOR, MULTI-TARGET TRACKING

% OF SHIPPING TRAFFIC IN NEW YORK HARBOUR

% BY THE VESSEL TRAFFIC SYSTEM.

%

%

% Written by: Major Ian Glenn

%

% Created: 14 Oct 95

% Modified: 18 Oct 95

%

%

%

% Associated files:

% Input: Init_PosnVel.m- Initialization routine

% PseudoMeasure.m - Take data and make
% into x&y

% , KalmanPredict.m

% KalmanUpdate.m

% ShipC.mat - Simulink track data
% ShipD.mat - Simulink track data
%

% Output: TrackTableGIb.mat - TrackTableRdr1
% TrackTableBankb.mat - TrackTableRdr2
%

% Problem Statement:

% Using the manoeuvre simulation to generate the actual

% target motion, use a filter to track the target in

%o the xy plane

% Tranform coordinates for radar sites

% Build the Track Table

%

T0%0 0% %o %0 % T %o o %o %0 %o T %o To o To %o %o T %o %o %o % T % %o %o %o %o o %o %6 % % %6 %6 % % %o %o.% % % %o %

%

% Initialize variables

%

% Assume identical radar specs

crsel=[NaN ;NaNJ];speed1=[NaN ;NaN];crse2=[NaN ;NaN];speed2=[NaN ;NaNJ;
%*******nur % sk ok &k Ak
Radar=2 % 1== Governor’s Island and 2 == Bank Street

PrintMe = 1 % 1 == print figures

PlotMe =2 % 1= see final plot 2 = see all plots

%* 3 ke e sk v K3k S5 3fe sk e sk ook sk ¥ sk ok ofe ke ok Rk kK

Site =[‘Governor”s Island’;

‘Bank Street ‘];
disp(‘Using the following Radar Site:”)
disp(Site(Radar,:))

delta_t = 3; % Real update times are 3 seconds

%%%% the ‘star’ indicates in spherical coordinates’
% R*:R_star is covariance of the measurement noise

sigmaRgeMtrs = 2*5; % rge bins / 12 Uniform distr 49/12=4.0833
sigma_r_2 = sigmaRgeMtrs/(1852”2); % variance of the range estimate (7 m)
%

(7
bear_var = 2*.04; % .6542/12 =0.035 Bearing variance based on Uniform distr
sigma_beta_2 = (bear_var * pi/180)*2;

R_star=| sigma_r_2 0;
sigma_beta_2];

82

q=10; % q gives how much variation we expect in plant.

0% %o %0 TeTo %o %o % e % Fo %o %o %o % %% LOAD AND PREP DATA %%% %% %% % %%
% Load the data set and strip off the time and initialization pts

load ShipDTrkData% data set of lat, lon & time from simulink

xypos_ship1 = [lat , lon]};

timeShipl=time;

rowsl = size(xypos_ship1,1)

shipSizel = 1200% 8:1 is rule of thumb 80m x 10m

load ShipCTrkData

xXypos_ship2 = [lat , lon};

timeShip2=time;

rows2 = size(xypos_ship2,1)

shipSize2 = 3200% 8:1 is rule of thumb 160m x 20m

% pad the data to create equal length vectors
if size(xypos_ship1,1) < size(xypos_ship2,1)
disp(‘Ship 2 has longest Track’)
longestTrk = xypos_ship2;
Xypos_ship1 = [xypos_shipl ;...
[0*ones(abs((size(xypos_ship2,1) - ...
size(xypos_ship1,1))),1)*xypos_ship1(size(xypos_ship1,1),1),...
O*ones(abs((size(xypos_ship2,1) -...
size(xypos_ship1,1))),1)*xypos_ship1(size(xypos_ship1,1),2)1];

disp(‘Ship 1 has longest Track’)
longestTrk = xypos_shipl;

else

xypos_ship2 = [xypos_ship2 ;...
[O*ones(abs((size(xypos_ship2,1) - ...
size(xypos_shipl,1))),1)*xypos_ship2(size(xypos_ship2,1),1),...
O*ones(abs((size(xypos_ship2,1) - ...
size(xypos_shipl,1))),1)*xypos_ship2(size(xypos_ship2,1),2)1];

disp(‘Ship 1 has longest Track’)
longestTrk = xypos_shipl;

end

xypos_ship2 = [xypos_ship2 ;...
[Q*ones(abs((size(xypos_ship2,1) -
size

%% %% %% % %% Set Radar Locations %% %% % %% %% %% %% %

rdrlx = -01- 05.53583/60;;%displacement of radar 1 in lat & lon
rdrly = 41+18.59502/60; % Governors Island

rdr2x = -05 - 25.33414/60;%displacement of radar 2 Bank Street
rdr2y = 38+48.5168/60 ;

%% % %% %% % %Repeat nloop times %%%% % %% %% %% % %% %6 %

nloop =1
for ctr = 1:nloop
ctr

% %0 %0 % %o %6 To % %o Pseudo-Measurement Vectorin X & Y %%%% %% %% % %% %% %% %
%% %% %% % %% for ships 1 (1) & 2 (2) and rdrs 1 & 2 %%% %% %% % %% %% %% %%

%
% This is where the error is added to simulate the parameters
% of the two radars

83

% What is returned is:

% z_w_noiseTrk1Rdr1- the ‘noisy’ lat and lon for track 1 as

% seen by radar

% zstarll - the ‘noisy’ range and bearing measurement
% xyposl - the actual lat and lon from simulink

% Track 1 as seen by RADAR 1: Governors’s Island -+-++++-+ttt++++

[z_w_noiseTrk1Rdrl,zstar11,xypos1] =...
PseudoMeasure(xypos_ship1,rdrix,rdriy,R_star);

% Track 2 as seen by RADAR 1: Governors’s Island +++++++++4-++++
[z_w_noiseTrk2Rdr1,zstar21,xypos2] =...
PseudoMeasure(xypos_ship2,rdrix,rdrly,R_star);

% Track 2 as seen by RADAR 2: Bank Street +++++++++++++tbrb bbb+
[z_w_noiseTrk1Rdr2,zstar12,xypos1] =...
PseudoMeasure(xypos_ship1,rdr2x,rdr2y,R_star);

% Track 2 as seen by RADAR 2: Bank Street +-+++-+++-++tdt++ 4+
[z_w_noiseTrk2Rdr2,zstar22, xypos2] =...
PseudoMeasure(xypos_ship2,rdr2x,rdr2y,R_star);

0% %o %o %o %o Fo T To %o %o To To To %o % %o % %o %o %o Yo %o %o % % %o % Yo %6 % % % % %o %o % %6 % % % % %
% State Initialization:

% Using the first two radar returns in x and y form.
% Compute the initial estimate xhat and phat
% Let rdr 1 pickup ship 1 first and rdr2 ship 2

[xhatl,phatl H,EQk]=...
Init_PosnVel(zstar11(1:2,:),z_w_noiseTrk1Rdr1(1 :2,2),delta_t,q,R_star);

[xhat2,phat2, H,F,Qk]=...
Init_PosnVel(zstar22(1:2,:),z_w_noiseTrk2Rdr2(1 :2,7),delta_t,q,R_star);

%% Initialize xyhat

% xyhat is xhatk+1 before actual measurement (prediction)

% transposed to match form of xypos--positions from simulink
xyhatl = (H*inv(F) * xhat1)’;

xyhatl = [xyhat]
(H*xhat1)’];

xyhat2 = (H*inv(F) * xhat2)’;

xyhat2 = [xyhat2 5
(H*xhat2)’};

%% %o Po o Fo %o %o %o % T % %o %o %o %o %o % %o % %o %o %o % %o %6 % 6% %6 %0 %6 %6 % % % % %6 %6 % %6 % %%
%

% Cycle through the data

n=size(longestTrk,1); %n=size(xypos1,1);

for count=3:n % start after 2nd obsn to last obsn
%%%%%%% Nearest Neighbour calculation to determine which measurement
% should be assigned to which track
% Nearest Neighbour radar 1

84

ztilde2! = z_w_noiseTrk2Rdr1(count,:)’-H*xhat1;
dist21=ztilde21’ *ztilde21;

ztilde22 = z_w_noiseTrk2Rdr1(count,:)’-H*xhat2;
- dist22=ztilde22’ *ztilde22;

if dist22 <= dist21;

zwnll = z_w_noiseTrk1Rdr1(count,:);
zwn21 = z_w_noiseTrk2Rdrl(count,:);

else
zwnll = z_w_noiseTrk2Rdr1(count,:);
zwn2l = z_w_noiseTrk1Rdr1(count,:);
end
% Nearest Neighbour radar 2

ztilde11 = z_w_noiseTrk1Rdr2(count,:)’-H*xhat1;
distl 1=ztilde11’*ztilde11;

ztilde12 = z_w_noiseTrk1Rdr2(count,:)’-H*xhat?2;
dist]12=ztilde12’*ztilde12;

if dist11 <= dist12;

zwnl2 = z_w_noiseTrk1Rdr2(count,:);
zwn22 = z_w_noiseTrk2Rdr2(count,:);

else

zwnl2 = z_w_noiseTrk2Rdr2(count,:);
zwn22 = z_w_noiseTrk1Rdr2(count,:);

end

%% %% %% % Prediction Step: %%%%%% Kalman prediction algorithm
[xhat],phat1] = KalmanPredict(xhat1,phat1,F,Qk);
[xhat2,phat2] = KalmanPredict(xhat2,phat2,F,Qk);

%%%%%%% Update Step: %%%%%% Kalman Measurement Update Step:
%

% Computes new position using Kalman gain

% and the innovations

% This doing the filtering entirely in x&y coords
rl= zstarl1(count,1);

betal= zstarll(count,2);
Frl=[cos(betal), -ri *sin(betal);
sin(betal), r1*cos(betal)];

2= zstar22(count,1);

beta2= zstar22(count,2);

Fr2=[cos(beta2), -r2*sin(beta2);
sin(beta2), r2*cos(beta2)];

% Now convert covariance back to x&y
% R= [sigma_xx"2sigma_xy”"2]

85

% [sigma_xy*2sigma_yy~2]

Rl1= Fr1*R_star*Frl’;
R2= Fr2*R_star*Fr2’;

if Radar == 1
% Perform measurement update using radar 1 info first
% This will do the updates based on what Governor’s Island sees

[xhat1,phat1] = KalmanUpdate(xhat1,phat1,H,R1,zwn11’);
[xhat2,phat2] = KalmanUpdate(xhat2,phat2,H,R2,zwn21’);
elseif Radar == 2

% Now perform measurement update again using radar 2 info
% This will do the updates based on what Bank Street sees

[xhat1,phat]] = KalmanUpdate(xhat1,phat1,H,R1,zwn12’);
[xhat2,phat2] = KalmanUpdate(xhat2,phat2,H,R2,z2wn22’);

end % end which radar to use

% Append to Estimate Matrix

if count <=rows1
xyhatl = [xyhat1;(H*xhat1)’];

if count >= 20% take the crse and speed over 1 min =3 sec x20
crsel = [crsel;math2nautDeg(...

(atan2((xyhat1((count-2),2)-xyhat1((count-19),2)),...
(xyhat1((count-2),1)-xyhat1((count-19),1))))+...

(atan2((xyhat1((count-1),2)-xyhatl((count-18),2)),...
(xyhatl((count-1),1)-xyhat1((count-18),1))))+...

(atan2((xyhat1(count,2)-xyhat1((count-17),2)),...
(xyhat1 (count,1)-xyhat1((count-17),1))))*180/(3*pi)));

speed] = [speedl; sqrt((((xyhatl ((count-2),1)-xyhat1((count-19),1)) +...
(xyhatl(count-1,1)-xyhat1((count-18),1))+...
(xyhatl(count,1)-xyhatl((count-17),1)))/3 ...
A2+ ...
(((xyhatl((count-2),2)-xyhat1((count-19),2)) +...
(xyhatl(count-1,2)-xyhat1((count-18),2))+...
(xyhat1(count,2)-xyhat1((count-17),2)))/3 ...
).22)*3600 /(17*delta_t)];% speed in knots
else
crsel = [crsel;NaN]J;
speedl = [speed1;NaN];

end
end

if count <=rows2
xyhat2 = [xyhat2;(H*xhat2)’];

if count >= 20% take the crse and speed over 1 min =3 sec x20
crse2 = [crse2;math2nautDeg(...
(atan2((xyhat2((count-2),2)-xyhat2((count-19),2)),...
(xyhat2((count-2),1)-xyhat2((count-19),1))))+...
(atan2((xyhat2(count-1,2)-xyhat2((count-1 8).2)),...
(xyhat2(count-1,1)-xyhat2((count-18),1))))+...
(atan2((xyhat2(count,2)-xyhat2((count-17),2)),...
(xyhat2(count,1)-xyhat2((count-17),1))))*180/ (B*pi)l;
speed2 = [speed2; sqrt((((xyhat2((count-2),l)-xyhat2((count-19),l)) +...

86

(xyhat2(count-1,1)-xyhat2((count-18),1))+...
(xyhat2(count,1)-xyhat2((count-17),1)))/3 ...

A2+ ...

(((xyhat2((count-2),2)-xyhat2((count-19),2)) +...
(xyhat2(count-1,2)-xyhat2((count-18),2))+...
(xyhat2(count,2)-xyhat2((count-17),2)))/3 ...

).A2)*3600 /(17*delta_t)};% speed in knots

else
crse2 = [crse2;NaNJ;
speed2 = [speed2;NaN];

end

end
end
end

Yo% % To %o %o To Yo ToTe To T To To o To To Yo Yo To Yo To To Fo To To Yo ToTo Yo To To o T To o %o To To %o To T To To %o To Yo
%
% Construct Track Tables for Radars 1 and 2

if Radar==1

TrackTableTrk1Rdr1 = [xyhatl , crsel,speed],shipSizel*ones(length(timeShip1),1),...
1003*ones(length(timeShip1),1),timeShipl,...
0*ones(length(timeShip1),1),9*ones(length(timeShip1),1)];

TrackTableTrk2Rdrl = [xyhat2 , crse2,speed2,shipSize2*ones(length(timeShip2),1),...
1004*ones(length(timeShip2),1),timeShip2,...
O*ones(length(timeShip2),1),9*ones(length(timeShip2),1)];

TrackTableRdr1b = [TrackTableTrk1Rdr1;TrackTableTrk2Rdr1];
% strip off values outside of Radar 1 Range

% Strip off South of 39°N
TrackTableRdr1b = TrackTableRdr1b(find(TrackTableRdr1b(:,2)>=39),:);

% Strip off West of 04’W
TrackTableRdr1b = TrackTableRdr1b(find(TrackTableRdr1b(:,1)>=-04),);

save TrackTableGIb TrackTableRdrlb

elseif Radar =2

TrackTableTrk1Rdr2 = [xyhat1 , crsel,speed],shipSize1*ones(length(timeShip1),1),...
2003*ones(length(timeShip1),1),timeShipl,...
O*ones(length(timeShip1),1),9*ones(length(timeShip1),1)];

TrackTableTrk2Rdr2 = [xyhat2 , crse2,speed2,shipSize2*ones(length(timeShip2),1),...
2004*ones(length(timeShip2),1),timeShip2,...
O*ones(length(timeShip2),1),9*ones(length(timeShip2),1)];

TrackTableRdr2b = [TrackTableTrklRd.r2;TrackTableTrk2Rdr2];

% strip off values outside of Radar 1 Range

% Strip off North of 40.5°’N

TrackTableRdr2b = TrackTableRdr2b(find(TrackTableRdr2b(:,2)<=40.5),:);

% Strip off East of 02’W
TrackTableRdr2b = TrackTableRdr2b(find(TrackTableRdr2b(:,1)<=-02),:);

save TrackTableBankb TrackTableRdr2b

87

IR Ien
URIRIRiniain i iainid

end

ToP0 % Po %o % Fo %o Fo %o %o %o To T %o Fo %o %o 9o %o %o %o % %o % %o %o % %o o %o %o %o % %o % %6 %% %6 % % %6 % % %6 %o
%
%o Compute Errors

% error is actual position minus estimated position

poserrl= xypos_ship1(1:rowsl,:)-xyhat1;
poserr2= xypos_ship2(1:rows2,:)-xyhat2;

% covariance matrix of the innovations

ssel= diag(poserr1*poserr1’);
sse2= diag(poserr2*poserr2’);

%%% Keep track of mean distance errors in disterr]
disterr1 = sqrt(ssel);
if ctr ==1

distmean] = disterr1/nloop;

xyhatmean1 = xyhat1/nloop;

else
distmean! = distmeanl + disterrl/nloop;
xyhatmean] = xyhatmean1i + xyhat1/nloop;
end

%%% Keep track of mean distance errors in disterrl
disterr2 = sqrt(sse2);
if ctr ==1

distmean?2 = disterr2/nloop;

Xyhatmean? = xyhat2/nloop;

else
distmean2 = distmean2 + disterr2/nloop;
xyhatmean?2 = xyhatmean2 + xyhat2/nloop;
end
end % end of outside loop

P0%0 %o % %% T %o To %o % %o %o %o %o %o %o %o %o To T %o %o %o %o %6 %o %o %o %o %o % T %o o % %6 % % % % % % % % % 6 %
%

% Plots
if PlotMe > 1

figure(1); clg
showChart3

if 0
plot(z_w_noiseTrk1Rdr1(:,1),z_w_noiseTrk1Rdr1(:,2), m’)
plot(z_w_noiseTrk1Rdr2(:,1),z_w_noiseTrk1Rdr2(:,2),r’)
plot(z_w_noiseTrk2Rdr1(:,1),z_w_noiseTrk2Rdr1(:,2),’b’)
plot(z_w_noiseTrk2Rdr2(:,1),z_w_noiseTrk2Rdr2(:,2),’c’)

end

plot(xyhatl(:,1),xyhat1(:,2),’b*")
plot(xyhat2(:,1),xyhat2(:,2),r+’)

plot(xyhat1(:,1),xyhat1(:,2),’y.")
plot(xyhat2(:,1),xyhat2(:,2),’g.’)

88

0% % e TeTo To To To To To Te To %o To To To To To To To T To Fo To To To %o To To To To To Fo %o To Fo To To o To %o %o %o %o %o

figure(2); clg

hold on

oplot(...
9otimeShipl,disterr1(1:size(timeShip1,1))*1852,’b-’,...
PotimeShip2,disterr2(1:size(timeShip2,1))*1852,'r-");

plot(...
timeShip1(1:634,:),disterr1(1:634)*1852,’b.,...
timeShip2(1:634,:),disterr2(1:634)*1852,’r-*);

fig2=gcf;
child = get(fig2,’Children’);
placeMe=get(child, Position’);

Est_err_title=[‘Radar ‘,num2str(Radar), * On: Est Dist Error for Ships 1 & 2: q=°,...
num2str(q), ¢ & bearing var = ‘, num2str(bear_var), ¢ degrees’};

title(Est_err_title);
Poaxis([0,rows,0,40])
xlabel(‘time step = 3 sec’)
ylabel(‘Miss Distance (m)’)
grid

h=legend(‘Single Run Distance Error Ship 1....

‘Single Run Distance Error Ship 2’);

PutMe=get(h, Position’);

set(h, Position’,[placeMe(1),(placeMe(2)+placeMe(4)-PutMe(4)),PutMe(3),PutMe(4)])
axes(h)

hold off

9o %0 %o %e Yo Te ToTo To Yo To %o e %o To Yo o To To To To T %o To To To To To %o To %o To %o %o Yo To %o To %o Fo
%%% Plot the actual and estimated track

figure(3);
clg

showChart1
hold on

plot(xyhat1(:,1),xyhat1(:,2),’b-’,...
xyhat2(:,1),xyhat2(:,2),’r-")
plot(xypos1(:,1),xyposl(:,2),c-.,...
xypos2(:,1),xypos2(:,2), m-.")
hold off
%Est_posn_titlel=[‘Radar ‘,num2str(Radar), ‘ On: Actual and Est Trajectories °,...

%’; q = ‘, num2str(q), * & bearing var = ‘, num2str(bear_var), ...
%’ degrees’];

otitle(Est_posn_title1)
Joxlabel(‘x distance (nm or min)’)
%ylabel(‘y distance (nm or min)’)

89

fig3=gcf;
child = get(fig3,’Children’);
placeMe=get(child(1), Position’);

h7=legend(‘Actual trajectory Ship 1°, ‘Est Trajectory Ship 1°,...
‘Actual trajectory Ship 2°, ‘Est Trajectory Ship 2°);
set(h7,’FontSize’,6)

PutMe=get(h7, Position’);

set(h7,’ Position’,[(placeMe(1)+placeMe(3)-PutMe(3)),...
(placeMe(2)+.02),PutMe(3),PutMe(4)])

axes(h7)

To% T To %o To %o %o ToTe %o To To To %o % %o o %6 To Fo %o %o %o To T To o To To %o To % %o %o %o %o % %o %
figure(4);clg
title(‘Course and Speed From Kalman Filter’)

subplot(2,2,1); plot(timeShip1(1:634,:),crse1(1:634,:),’b’);
xlabel(“Time (sec)’); ylabel(‘Course (degrees)’)

subplot(2,2,2); plot(timeShip2(1:634,:),crse2(1:634,:),r’)
xlabel(“Time (sec)’); ylabel(‘Course (degrees)’)

subplot(2,2,3); plot(timeShip1(1:634,:),speed1(1:634,),’b")
axis([21,timeShip1(length(timeShip1)),8.5,11.5])
xlabel(“Time (sec)’); ylabel(‘Speed (knots)’)

subplot(2,2,4); plot(timeShip2(1:634,:),speed2(1:634,:),’r’)
axis([21,timeShip2(length(timeShip2)),8.5,11.5])
xlabel(“Time (sec)’); ylabel(‘Speed (knots)’)

end % PlotMe >1

%% %P0 %P0 % %o %o T To %o Fo %o o % o T o %o %o % %o %o o o % %o % o % %o To % % %6 %o
%%% Plot the estimated data track to feed into the fusion algorithm

if PlotMe >= 1

figure(5);
clg

showChart1

if exist(‘TrackTableRdr1b’)
plot(TrackTableRdr1b(:,1), TrackTableRdr1b(:,2), bo’)
end

if exist(‘“TrackTableRdr2b’)
plot(TrackTableRdr2b(:,1), TrackTableRdr2b(:,2), r+*)
end

if exist(“TrackTableRdr1b’)
plot(TrackTableRdr1b(:,1),TrackTableRdr1b(:,2),’y.")

end

if exist(‘TrackTableRdr2b’) .
plot(TrackTableRdr2b(:,1), Track TableRdr2b(:,2),’k.")

end

if 1

figs=gcf;

child = get(figS, Children’);
placeMel=get(child(1), Position’);

h8=legend(‘Radar 1 Tracks’, ...
‘Radar 2 Tracks’);

90

set(h8,’ FontSize’,6)

PutMel=get(h8, Position’);

set(h8, Position’,[(placeMe1(1)+placeMe1(3)-PutMel(3)),...
(placeMe1(2)+.02),PutMel (3),PutMe1(4)])

axes(h8)

end

%% %o To Yo To %o To To To To To To o To To To %o To %o To %o To o To To To %o Yo %o %o o %o To %o %o %6 To

figure(6);
clg

showChart3

if exist(‘TrackTableRdr1b’)
plot(TrackTableRdr1b(:,1),TrackTableRdr1b(:,2),’b.”)
end

if exist(‘TrackTableRdr2b’)
plot(TrackTableRdr2b(:,1), TrackTableRdr2b(:,2),’r.")
end

if1

figb=gcf;
child = get(fig6, Children’);
placeMel=get(child(1), Position’);

h9=legend(‘Radar 1 Tracks’, ...
‘Radar 2 Tracks’);
set(h9,’FontSize’ ,6)

PutMel=get(h9, Position’);

set(h9,’ Position’,[(placeMe1(1)+placeMe1(3)-PutMe1(3)),...
(placeMe1(2)+.02),PutMe1(3),PutMe1(4)])

axes(h9)

end

end % - end PlotMe >=1
Yo% Yo Fo To %o To % To %o o To %o Te To Fo To %o To To T %o To Yo % To To To %o Yo % To %o %o

if PrintMe == 1
if Radar ==

figure(1)

print -dpsc figl EstTrksRdr1b
print -dgif8 fig1EstTrksRdrlb
figure(2)

print -dpsc fig2ErrorRdrib
print -dgif8 fig2ErrorRdrib
figure(3)

print -dpsc fig3TrajRdr1b
print -dgif8 fig3TrajRdr1b
figure(4)

print -dpsc figdCrseSpeed1b
print -dgif8 figdCrseSpeedib

elseif Radar =2

91

end

end

figure(1)

print -dpsc figlEstTrksRdr2b
print -dgif8 figl EstTrksRdr2b
figure(2)

print -dpsc fig2ErrorRdr2b
print -dgif8 fig2ErrorRdr2b
figure(3)

print -dpsc fig3TrajRdr2b
print -dgif8 fig3TrajRdr2b
figure(4)

print -dpsc figdCrseSpeed2b
print -dgif8 figdCrseSpeed2b

% end Radar

figure(5)

print -dpsc figSBothRdrsb

print -dgif8 fig5SBothRdrsb
figure(6)

print -dpsc fig6ZoomBothRdrsb
print -dgif8 fig6ZoomBothRdrsb

% end PrintMe

92

PseudoMeasure.m

function [z_w_noise,zstar,xypos]=PseudoMeasure(xypos,rdrlocx,rdrlocy,R _star)
%

% PseudoMeasure.m

% Major Ian Glenn

%

% Written by: Major Ian Glenn

%

% Created: 14 Oct 95

% Modified: 17 Oct 95

%

% MULTI-SENSOR, MULTI-TARGET TRACKING

% OF SHIPPING TRAFFIC IN NEW YORK HARBOUR
% BY THE VESSEL TRAFFIC SYSTEM.

%

% Take xypos data from simulink with the radar location
% and create pseudomeasurements in x&y with noise added

90%0 %o %o %o Pe %o To To %o To To Yo To To %o To %o To T To To To To %o To %o Fo %o o Yo %o %o Yo To %o % %o % Yo %o %o %o Yo %o %o T %o
%

% Initialize variables

%

%%%% the ‘star’ indicates in spherical coordinates’

% R*:R_star is covariance of the measurement noise

0% % TeTeTo Fo To %o %o %o %o %o % %o %Te% PREP DATA. %% %% %% %e%o%o% %o % %% To %o %o %o % %% %o %%
%

% Strip off the time and initialization pts

data = xypos;

%rows = size(xypos,1);

% Take the x&y position data from simulink and

% compute rge and bearing with additive noise (uncertainty)

% z*=[sqrt({x-rdrlocx}*2 + {y-rdrlocy }*2)] <= rge + [rge variation]

% [atan2({y-rdrlocy}/{x-rdrlocx})] <= bearing [bearing variation]

%% %% %% %% % Measurement Matrix in RANGE AND BEARING %%%%%%%%%%%%%%%%
zstar = [sqrt((xypos(:,1)-rdrlocx).A2 + (xypos(:,2)-rdrlocy).A2) , ...
atan2((xypos(:,2)-rdrlocy),(xypos(:,1)-rdrlocx))] ...
+ [randn(size(xypos,1),1) .* (sqrt(R_star(1,1))) ,...
randn(size(xypos,1),1) .* (sqrt(R_star(2,2)))];

% check result with “polar(zstar(:,2), zstar(:,1))

Yofigure;

%hold on

%epolar(zstarl1(:,2), zstar11(:,1))

ohold off

% Now convert back to a pseudo-measurement x&y
% Convert rge & bear back to x&y

% z= rge * cos(bearing) = x]

% rge * sin(bearing)=[y]

%% %% %% %% % Pseudo-Measurement Vector in X & Y %% %% % % %% % %% %% % %%
z_w_noise = [zstar(:,1) .* cos(zstar(:,2)) , zstar(:,1) .* sin(zstar(:,2))];

Z_W_noise = [(z__w_noise(:,1)+rdrlocx),(z_w__noise(:,2)+rdrlocy)];

return
9% F0% Fo %o %o o %o %o % %o % Fo T To Fe o To To %o To o % %o %o % %o o % %o To %o %o %o %o 96 % %o %o % %o % % 96 %%

93

% check with“plot(z_w_noise(:,1),z_w_noise(:,2));axis([0 10000 0 100007)”
ﬁgure;plot((z_w_noise(:,1)+rdrlocx),(z_w_noise(: ,2)+rdrlocy));
axis([0 10000 0 10000])
h3=line({rdrlocx rdrlocx],[rdrlocy-500,rdrlocy+500]);
set(h3,’ Linestyle’, --")
set(h3,’color’, green’)
text(rdrlocx+100,rdrlocy+100, Radar 1°)
h4=line([rdrlocx-500 rdrlocx+500], [rdrlocy,rdrlocy]);
set(h4, Linestyle’,’--’
set(h4,’color’, green’)

94

KalmanPredict.m

function [xhat_new,phat_new] =KalmanPredict(xhat,phat,Phi,Qk);

% KalmanPredict: takes the old measurement and covariance
% data, and predicts expected value for new
% Expected value is just Phi matrix times old average value

xhat_new = Phi*xhat;
% New covariance is increased by the discrete plant noise Qk

phat_new = (Phi*phat*Phi’)+Qk;

95

KalmanUpdate.m

function [xhat_new,phat_new] = KalmanUpdate(xhat,phat,H,R,z);

%

% KalmanUpdate: takes new measurement and old prediction
% info and provides updated position estimate
% and covariance

% Calculate Kalman gain

K= phat*H’ *inv((H*phat*H’+R));

% Calculate the innovations

innovations = z-(H*xhat);

% Update xnew given new measurement
xhat_new = xhat + K*innovations;

% Update covariance based on new measurement

I=eye(size(K*H));
phat_new = (I-K*H)*phat*(I-K*H)’ + K*R*K’;

96

Init_PosnVel

function [xhat,phat,H,F,Qk]=Init_PosnVel(zstar,z_w_noise,delta_t,q,R_star)

% Major Ian Glenn
% POSITION-VELOCITY Initialization Function

(4
90%0 %0 % To %o %o To To %o FoTo To To To To T To To Fe To Fo %o Fo %o To %o To To To To %o To To To To %o o o %o %o To

%
% Initialize variables

% F= Phi: state transition matrix from k to k+1

% This is the consant velocity model
F=[1 delta_t O 0;
0 1 0 0;
0 0 1 delta_t;
0 0 0 15;
% H: matrix corresponds to state space C, observed variables
H=[1000;
0010]

% Q: covariance of the plant noise with delta t =.1sec

Sigmal = [delta_t*3/3 delta_t 2/2;
delta_t*2/2 delta_t];

Qk=g*[Sigmal zeros(2,2);
zeros(2,2)Sigmal];

To0%Fe %0 %o %o To % o To ToTo %o T To To T o Yo %o To e Fo To To %o o %o To To %o %o To o To o To To %o %o T T T o o %o Fo To %o %o %o o % %o %o

%
% Estimate Position from data:
% Using the first two radar retums in rge and bearing form
% Compute the initial estimate of position from the rge and
% bearing and express the result as x and y.
CapX=[H ;
H* inv(F) 5
z=[z_w_noise(2,:),z_w_noise(1,))]’;
xposn = z(1);
xvel = (z(3)-z(1))/delta_t;
yposn = Z(2);
yvel = (z(4)-z(2))/delta_t;

xhat = [xposn, xvel, yposn, yvel I’;
% now compute phat (the initial covariance estimate)
Finv= inv(F);
= zstar(2,1);
beta= zstar(2,2);
Fri=[cos(beta), -r*sin(beta);
sin(beta), r*cos(beta)];

Rl = Fr1*R_star*Frl’;

97

EZ Zt=

phat =

return

=
beta=
Fr2=[

R2=

zstar(1,1);
zstar(1,2);
cos(beta), -r*sin(beta);
sin(beta), r¥cos(beta)];

Fr2*R_star*Fr2’;

E_Z2_Z7Z2t = H*Finv*Qk*Finv’*H’ + R2;

[

inv(CapX)*E_Z_Zt*E_Z_Zt *inv(CapX)’;

R1 zeros(2,2);
zeros(2,2) E_Z2_7Z2t];

98

APPENDIX C. PREPROCESSING CODE

- This appendix contains the code used to preprocess the Telephonics radar data for

use in fusion algorithm. The code in this appendix is as follows:

* ReadData.m on page 100.

* hex2bstr.m on page 103.

* printPretty.m on page 104.

» simpleCoordConv.m on page 105.

* naut2mathRad.m on page 106.

* rads2DMS.m on page 107.

99

ReadData.m

% ReadData.m<PRE>
%
% By: Major Ian Glenn
%
% written: 10 Sep 95
Z? modified: 20 Oct 95
(/]
% This algorithm is designed to read hex code from radar processor
% convert it into binary to extract the necessary flags
% and information.
%
% Design:
%
% Initialize variables
% While not end of file
% Build a 2 by n matrix of hex data read from ASCII File
% end while
%
% While not end of matrix
% Look for header and set pointer
% Decode and translate each data segment
% Append to data matrix
% end while
clear
A= [40’;909];

ObsnMatrix=zeros(9,1);
nm2metres = 1852.0;

fid=fopen(‘tracks3.m’);% get data from file

% This assumes that the header will be ‘8’ in the first line
% and ‘0’ in the second line.
while 1 % while true read in the file line by line

linel = fgetl(fid);
if ~isstr(line1), break, end

linel = linel(1: find(linel=="*")-1);% trim off “*’
line2 = fgetl(fid);
if ~isstr(line2), break, end

line2 = line2(1: find(line2=="*")-1);% trim off “*’

A =[A(1,) ,linel;...
A(2,), line2];

end

fclose(fid);

vectorLength = size(A,2);
rowl= findstr(A(1,:), 8);
row2 = findstr(A(2,:),0);
ptr =rowl;

i=1; j=1;
while i <= length(row1);

if find(row1(i)==row2) ~=[]

100

§ngix(j)=ﬁnd(row1(i)=qow2) ;

i=i+1;
j=j+L
else
i=i+l;
end
end
fori=1: length(rowl)
ptr = row2(indx(i));
if ptr+36 >= vectorLength, break,end% stop before exceed matrix dimension
header = hex2bstr([A(1,ptr), A(2,pt0)]);
siteIDno = hex2bstr([A(1,ptr+1), A(2,ptr+1)]);
% bstr_dec(siteIDno);
sitelDnoDec =1 % simulate a site ID number since one is not given
%

% once identify the radar site can retrieve it’s location and height
rdrlat=0;rdrlon=0;

trackIDno= hex2bstr([A(1,ptr+2), A(2,ptr+2), ...
A(1,ptr+3), A(2,ptr+3)]);
trackIDnoDec = bstr_dec(trackIDno)

if trackIDnoDec <= 1022% filter out the *filler track*
% track 1023 is used to keep system
% filled with data
trackTime= hex2bstr([A(1,ptr+4), A(2,ptr+4), ...
A(1,ptr+5), A(2,ptr+5), ...
A(1,ptr+6), A(2,ptr+6), ...
A(1,ptr+7), A(2,ptr+7), ...
A(1,ptr+8), A(2,ptr+8)]);

secondsBin =trackTime(1:32);
secondsDec=bstr_dec(secondsBin);

sec100Bin = trackTime(34:40);

sec100Dec = bstr_dec(sec100Bin);

crse = hex2bstr([A(1,ptr+9), A(2,ptr+9), ...
A(1,ptr+10), A(2,ptr+10)));

crseDeg= bstr_dec(crse(3:16)) * 360/16384;

speed = hex2bstr([A(1,ptr+11), A(2,ptr+11), ...
- A(1,ptr+12), A(2,ptr+12)]);

speedKts= bstr_dec(speed) * 0.0625;

predRge = hex2bstr([A(1,ptr+13), A(2,ptr+13), ...
A(1,ptr+14), A2,ptr+14)]);

predRgeNM= bstr_dec(predRge) * 256/65536;

predAz = hex2bstr([A(1,ptr+15), A(2,ptr+15), ...
A(1,ptr+16), A(2,ptr+16)]);

101

end

predAzDeg= bstr_dec(predAz(3:16)) * 360/16384;

rdrRge = hex2bstr([A(1,ptr+17), AQ2,ptr+17), ...
A(1,ptr+18), A(2,ptr+18)]);

rdrRgeNM= bstr_dec(rdrRge) * 256/65536;

rdrAz = hex2bstr({A(1,ptr+19), A(2,ptr+19), ...
A(1,ptr+20), A(2,ptr+20)]);

rdrAzDeg= bstr_dec(rdrAz(3:16)) * 360/16384;

% calculate the latitude and longitude of the target
[tgtlat,tgtlon]=simpleCoordConv(rdrlat,rdrlon,predRgeNM,radians(predAzDeg));
extentRge= hex2bstr([A(1,ptr+21), A(2,ptr+21)]);

extentRgeNM= bstr_dec(extentRge) * 256/65536;

extentAz = hex2bstr([A(1,ptr+22), A(2,ptr+22), ...
A(1,ptr+23), A(2,ptr+23)]);

extentAzDeg= bstr_dec(extentAz(3:16)) * 360/16384;

vesselSize = (extentRgeNM * nm2metres)*...
2* predRgeNM*nm2metres*tan(extentAzDeg*pi/360);

trackQual= hex2bstr([A(1,ptr+24), A(2,ptr+24)]);

if trackQual(1) == ‘1’; autoTrk=1; else; autoTrk=0;end

if trackQual(2) = ‘1°; manualTrk=1; else; manualTrk = O;end
if trackQual(3) == ‘1’; lostTgt=1; else; lostTgt = O;end

if trackQual(4) == ‘1’; coastTgt=1; else; coastTgt = 0;end
trackQualDec= bstr_dec(trackQual(5:8));

% The following Data Structure will be used throughout this algorithm:
%

1 Tgt Latitude - X Position [DDMM.SSSSSS]
% 2 Tgt Longitude - Y Position[DDMM.SSSSSS]
% Course - COG - Crse over Ground[degrees)

3
% 4 Speed - SOG - Speed over Ground[knots]

% 5 Size - This is Extent Rge (m) x Extent Az (m)[m*2]
% 6 Site Id - This is the reporting radar in the 1000th posn
% and the given track number
% 7 Time - This the GPS time in seconds from system start{sec]
% 8 Lost Track - set when the Kalman filter fails
% 9 Track Quality - 0-9
% 10 PlatformNo - Global Track Name associated with a platform icon
ObsnMatrix=[ObsnMatrix(1,:) , tgtlat;...

ObsnMatrix(2,:) , tgtlon ;...

ObsnMatrix(3,:) , crseDeg ;...

ObsnMatrix(4,:) , speedKts ;...

ObsnMatrix(5,:) , vesselSize;...

ObsnMatrix(6,:) , (siteIDnoDec *1000+trackIDnoDec);...
ObsnMatrix(7,:) , (secondsDec + sec100Dec/100) ;...
ObsnMatrix(8,:) , lostTgt ;...

ObsnMatrix(9,:) , trackQualDec];
% note: At this point the site is multipled by 1000 and combined with
% the track number to make a composite identifier
% i.e. site 1 and track 2 becomes 1002
% This is possible as the max number of tracks per site is 999.
end % end track filler condition

ObsnMatrix=ObsnMatrix(:,2:size(ObsnMatrix,2)):% trim off initial zero column
ObsnMatrix=ObsnMatrix’; % reorient the vector
printPretty(ObsnMatrix);

102

hex2bstr.m

function S=hex2bstr(x);

%
%
%
%
%
%
%
%
S=[}
n=x;
%

Maj Ian Glenn
inglenn@nps.navy.mil
last rev 13 Jul 95

converts a hex number into a binary
number in a string vector S.

n=dec2hex(x);

for i=1:length(n);

if stremp(n(1,i),F’)
ssub="1111";
elseif stremp(n(1,i),E’)
ssub="1110";
elseif strcmp(n(1,i),’D’)
ssub="1101";
elseif stremp(n(1,i),C")
ssub="1100’;
elseif stremp(n(1,i),B’)
ssub="1011";
elseif stremp(n(1,i),’ A’)
ssub="1010’;
elseif stremp(n(1,i),’9’)
ssub="1001";
elseif stremp(n(1,i),’8")
ssub="1000";
elseif stremp(n(1,i),’7’)
ssub="0111’;
elseif stremp(n(1,i),’6”)
ssub="0110’;
elseif stremp(n(1,i),’5)
ssub="0101";
elseif stremp(n(1,i),’4’)
ssub="0100’;
elseif stremp(n(1,i),’3)
ssub="0011";
elseif stremp(n(1,i),’2’)
ssub="0010’;
elseif stremp(n(1,i),’1°)
ssub="0001";
else ssub="0000";

end

S=[S ssub];

end

103

printPretty.m

funcnon [I=printPretty(InputMatrix)
function [J=printPretty(InputMatrix)

%

% by Major lan Glenn

%

% written: 9 Sep

% mod: 19 Oct 95

%

%o Design:

%

% Takes the track matrix and formats it in a more readable form.

disp(‘LatitudeLongitude Course Speed Size ‘..
‘Site& Time LT TQ’)

disp(‘ (nm) (nm) (deg) (kts) (m~2) ‘.
‘Track (sec))

% lon crse spd siz site time It tq
out= sprintf(‘%10.7f %12.7f %7 If %7.2f %8.1f %12.0f %12.2f %4.0f %4.0f \n’,InputMatrix’);

disp(out)

104

simpleCoordConv.m

function [tgtlat,tgtlon]=simpleCoordConv(rdrlat,rdrlon,Rnm,mathRad)

% function [tgtlat,tgtlon]=simpleCoordConv(rdrlat,rdrlon,Rnm,mathRad)
%

% Written by: Major Ian Glenn

%

% Created: 5 Sep 95

% Modified: 20 Oct 95

%

% Input:

% 11 -rdrlat Radar site latitude in DDMM.SS

% 12 ~-rdrlon Radar site longitude in DDMM.SS

% I3 -Rnm Rge in NM from radar site

% 14 - mathRadMathematical radian bearing from radar site
%

% Output:

% 01 - tgtlat Target latitude in MM.SS
% 02 ~tgtlon Target longitude in MM.SS

%

%

% Design:

%

% This function provides simplified conversion of lat and lon from RSP

%
% Calls:

% naut2mathRad.m - converts nautical reference to mathematical ref
% rads2DMS.m - convert radians to degrees,minutes and seconds

%
%
%

NMperDEG = 60;
NMperRAD = NMperDEG*180/pi;

%disp(num2str(mathRad*180/pi))

A = naut2mathRad(mathRad); % convert from nautical frame of reference to math ref
tgtlatRad = rdrlat + (Rnm * cos(A) / NMperRAD);

tgtlonRad = rdrlon + (Rnm * sin(A) / (NMperRAD * cos(rdrlat)));
% disp(‘RSP SUCCESS’);

%disp(‘“Tgt Latitude’)

%disp(num2str(tgtlatRad))

[tgtdeg, tgtmin, tgtsec]=rads2DMS(tgtlatRad);

tgtlat= tgtdeg* 100+tgtmin+tgtsec/60

%edisp(‘Tgt Longitude’)

%disp(num2str(tgtlonRad))

[tgtdeg, tgtmin, tgtsec]=rads2DMS(tgtlatRad);
tgtlon = tgtdeg* 100+tgtmin-+tgtsec/60

105

naut2mathRad.m

function [mathRad}=naut2mathRad(nautRad)
% convert nautical based coord system to math system
% in radians fro computations

%
% function [mathRad]=naut2mathRad(nautRad)
%
% mod: 21 Aug 95
if nautRad > 2*pi
error(‘input greater than 2 Pi radians’)
end

if nautRad >= pi/2
mathRad = 2*pi -nautRad+pi/2;
else
mathRad = pi/2 - nautRad;

end

% rotate by changing direction

106

rads2DMS.m

function [tgtdeg, tgtmin, tgtsec}=rads2DMS(tgtrads)

% function {tgtdeg, tgtmin, tgtsec]=rads2DMS(tgtrads)
%

% Written by: Major Ian Glenn

%

% Created: 21 Aug 95

% Modified: 20 Oct 95

%

% Input:

% n - tgtrads
%

% Output:

% 01 - tgtdeg
% 02 - tgtmin
% 03 - tgtsec
%

% Design:

%

% This function takes rads and returns DMS for plotting on chart
%

%

% Calls:

% .m -

tgtdegf=tgtrads*180/pi;

tgtdeg = fix(tgtdegf);

tgtminf = tgtdegf - tgtdeg;

tgtminf = (tgtdegf - tgtdeg)*60;

tgtmin = fix(tgtminf) ;

tgtsec = (tgtminf - tgtmin)*60;

if tgtsec > 0.0001 % Trim precision
tgtsec = tgtsec;
else

tgtsec =0;
end

%Out= [num2str(tgtdeg, 0),’ / *, num2str(tgtmin,0), / ...
% num?2str(tgtsec,5), (Degrees/Min/Sec) >>> note: 1 min= 1 nm’];
%edisp(Out)

107

108

APPENDIX D. SIMULINK SIMULATION PARAMETERS

This appendix contains the descriptions of the Simulink model used to generate the
trajectories used in the Multitarget Kalman Filter. Figure D.1 shows the model. The Mat-
lab program, turn_ms1.m on page 111, was used in the Matlab Function Block. The other
block parameters are detailed in Figure D.2 and Figure D.3 .

Table D.1 shows the parameters used in ShipCInitSim.m on page 114 to generate

the trajectories.

Parameters ShipA | ShipB | ShipC | ShipD
Initial Latitude (min.sec) -2.00 -5.46 -5.46 -0.45
Initial Longitude (min.sec) 41.90 38.89 38.89 41.80
vessel Vel (m/s) 0.0028 0.0028 0.0028 0.0028
crse (nautical degrees) 180 68 68 200
startTurnl (sec) 260 122 122 142
endTurn1 (sec) 440 330 330 300
initialValueTurn1 (rad/sec) 0 0 0 0
finalValueTurn1 (rad/sec) -w -W -w -W
startTurn2 (sec) 1160 480 400 1200
endTurn2 (sec) 1340 680 750 1450
initial ValueTurn2 (rad/sec) 0 0 0 0
final ValueTurn2 (rad/sec) w -w w w
endtime (sec) 1700 900 1900 2050

Note: turn rate, w, was set to 0.0044 rad/sec for all simulations

Table D.1: Parameters Used To Generate Trajectories

109

Nmom%v_koh (m) ujereyuiny
¢
I yoelL | diys xnwaqg @ anLous
xnwaq
[Pl ¢—
dsyiom oy 2y Y igqeibejy U4 BYILYIN XN
e uojouny
- B Bl o Bl e e av1LviN [x0n
1L 80BdSHIOM 0L

110

Figure D.1. Simulink Model Used To Generate Trajectories

turn_msl.m

function x0 = turn(u)
% for maneuver simulation 1

% Define plane of tumn with normal vector, P= [x;y;z]
p=[0;0;11;% defines turn in xy plane
w =u(1); % turn rate

x = u(2:7);% state vector is contained here

F= [01 00 00;
00 0 -w*p(3) 0 w*p(2);
00 01 00;
0 w*p(3) 00 0 -w¥p(1);
00 00 01,
0 -w*p(2) 0 w*p(1) 00];

x0 = F*x;

111

.
.

7
7
7

.

%

Figure D.2. Simulink Model Parameters One

112

.

B

////

7
.

/_

. ¥ 4
2 >
,//%%’f

.)
,%/%/ % . 7

7 i
i 7 s A

y-fg--/c- Avim*iroshs’

R

Figure D.3. Simulink Model Parameters Two

113

ShipClInitSim.m

% ShipClnitSim.m

% 23 Oct 95

% This code defines the variables used by the simulink model.

% This is the initial placement of Vessel One

% [xposn (nm), xVel (nm/s), yposn (nm), y Vel (nm/s), zposn (nm), zVel (nm/s))

vessel Vel =0.0028
crse=68

nautRad = crse *pi/180;%rad
[mathRad]}=naut2mathRad(nautRad);

x Vel =vessel Vel*cos(mathRad)
yVel =vessel Vel*sin(mathRad)

InitValuel=[-5.4600;x Vel;38.89;yVel;0,0]% start at top of chart
% y vel in degrees/sec
% 10 nm/hr * 1hr/3600 sec = 0.0028 (nm or minutes)/sec
%
%10 knots * 1852 m/3600sec = 5.144 m/s

% Next we need to initialize the times for turns
% Turn rates are calculated as follows

%

% llallX g’s * 9.8m/s"2

% T — = = [rads/sec]

% livilspeed (m/s)

%

% for a tanker etc. It should be about 3 min to turn 45 degrees
% or 0.0044 rads/sec when doing about 10 knots

w = 0.0044 % use -ve w for CW turn and +ve w for CCW turn
startTurnl = 122

endTurnl =330

initialValueTurnl = 0
finalValueTum1 = -w% CW tum

startTurn2 = 400

endTurn2 = 750

initialValueTurn2 = 0

finalValueTurn2 = w% CW turn

% set the end time for simulation > 30 min = 1800 sec
endtime = 1900

rk45(‘SimVesselTrks’ ,endtime)

oreturn
% run this bit afterwards

save ShipCTrkData time lat lon
figure(1)
showChart1

%get(trk 1 Handle)
plot(lat,lon,’m.”)

114

10.

LIST OF REFERENCES

Ruthenberg, Thomas M., “Data Fusion Algorithm for the Vessel Traffic Services
System: A Fuzzy Associative System Approach,” Master’s Thesis, Naval
Postgraduate School, Monterey, CA, March 1995.

Range Directorate Chesapeake Test Range, “System Design Document For The
Coast Guard Vessel Traffic Service System,” MIPR Number DTCG23-92-F-
TAC111, Naval Air Warfare Center, MD, March, 1994.

Waltz, E. and Llinas, J., Multi-Sensor Data Fusion, Artech House Inc., Boston,
MA, 1990.

Hall, David L., Mathematical Techniques in Multisensor Data Fusion, Artech
House Inc., Norwood, MA, 1992.

Inter-National Research Institute (INRI), Functional Description Document for
Automated Dependent Surveillance (ADS), July 25, 1995.

Inter-National Research Institute (INRI), Tdbm Service Application Programmer’s
Interface (API) For the Unified Build (UB) Software Development Environment
(SDE), SPAWARSYSCOM SDE-API-TDBM-2.0.11.5, March 31, 1994.

Technical Information Exchange Meeting between Inter-National Research
Institute, USCG and NPS, Reston, VA, November 3, 1995.

Telephonics, MTE-2000 Marine Target Extractor Technical Manual, Part No.
523854, Farmindale, NY, April 1, 1995.

Glenn, Ian N., “Multi-Sensor Multi-Target Tracking of Shipping Traffic,” EC4980
Final Project, Naval Postgraduate School, Monterey, CA, May 25, 1995.

Bar-Shalom, Y. and Li, X., Multitarget-Multisensor Tracking: Principles and
Techniques, 1995.

115

116

INITIAL DISTRIBUTION LIST

Defense Technical Information CENLETcoeeeveeeeeeeereeeeeereeeeeeeeeeeeeeeseeeeesseaeseas
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library, Code 013coooriiiiniieeeeeerreseieeteeeectesee e e see e
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code EC ...ttt cre st se e see s
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

Prof. Murali Tummala, Code EC/TU ..ot
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

Prof. Roberto Cristi, COAe EC/CX ..nuuiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeavanaseseassasseesaeaneens
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA 93943-5121

Prof. Robert Hutchins, Code EC/HUc.cocooiiiririeeeeeeteceeie e eenens
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

Prof. Herschel H. Loomis, Jr.,, Code EC/LMcceouveeieieeviiereeeeeereeeevenenns
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5121

LCDR Michael LINZEYccociiuinmiriinenrerenieneenienentse et sie e ssesesse s e
P.O. Box 60

USCG EECEN

Wildwood Crest, NJ 08260-0060

LCDR BObbY Lam......cccoiiiiiiiiieeieeniecieenicsnete s teseeste e ssessesaesnessesessnsenennens
Coast Guard Navigation Center

7323 Telegraph Rd.

Alexandria, VA 22315-3998

117

10.

11.

12.

13.

14.

15.

LT JORN WOOQ ...ttt e e e e e e e e e e e e eeeme e s e s e e e

P.O. Box 60
USCG EECEN
Wildwood Crest, NJ 08260-0060

Dr. DWAYNE PIESIETceveiiiiiieiteeeeeteteeeeetetee ettt eeeve s eeeee e e searenas

Inter-National Research Institute
12350 Jefferson Avenue, Suite 400
Newport News, VA 23602-6959

Brigadier General J.R. Marlauoeveuieereieeeceieceieeeeeeeeeeeee e

Director General

Land Equipment Program Management
National Defence Headquarters

101 Colonel By Drive

Ottawa, Ontario

K1A 0K2

L. LLISEET ..ottt ee e e e e e eeeee s s eseseeseeme e e e et s e e e

Director Soldier Systems Program Management
National Defence Headquarters

101 Colonel By Drive

Ottawa, Ontario

K1A 0K2

Mr. Dennis Guertin, DSIS 3......ooeeioeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e

Director Scientific Information Services
National Defence Headquarters

101 Colonel By Drive

Ottawa, Ontario

K1A 0K2

Major Ian N. GIENNcoceiiirieiie ettt eeeee e e s e e erans

Director Soldier Systems Program Management
National Defence Headquarters

101 Colonel By Drive

Ottawa, Ontario

K1A 0K2

118

